q

MANUAL

MANODAL

The Compucoior 8001 CRT

&

Compucolor Corporation
P.O. Box 569

MNorcross, Georgia30071
Telephone 404/449-5879

Ry N4
— -~ 'h-, .;—,(; M T -
I 7 J_ <Oy) l)/ bl e s
T ay P.“F‘:F‘\y/ : :’76' Q‘)"S N i’\(.‘.
fer Tlnoﬂ(, Td nee o decent Bese élevelopmm‘f m .
T_LC‘_H:'- (5 Ne AC»L!L’T "f'!\cl'f 'H«e CCS«Z@i . Lo\
Power{q| s/;ham w Aeqebrnqen

DES’RA(}L—E ADJ)[nE -."3'>L»\r.1"\/ C"H c.\‘\ oa’\t'.f:D
. D.C.S. & EXTE DED BASIC 1 FILES.

2. ATABLE va ‘
3. VARIA PREC!3 A IABLE SE ULTRA-CALCUYLATC S,
H. £Di Ja UTINES .

5. 8AC cR FOR RAN CoemMPIiLE . B L '*ER"ETERD
G Fw¥ 'PRGGRAMMEP\/U" RAMM ER .
7 MeRE B FULl PLCT SYSTEM NCLub - 3=D

[~

LI o

DIAGRAM CAPABILITIES, MAYRE HIDPEN-LINEAPaneS,

AN TORLT(TUTI =N ~RI-ELEMENT v TABLES .
RTE 7 oL, T R A N Bl
y l _‘I
| =.x~,

i, . - .
‘ L%\v B NIV NS - Bcipg coof o

BASIC 8001

TABLE OF CONTENTS

Introduction

Summary of Commands

Error Messages

BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC
BASIC

Using

8001

8001

8001

8001

8001

8001

8001

8001

Arithmetic

Strings

Immediate Mode
Statements
Arithmetic Functions
User Define Functions
String Functions

Editing Commands

Assembly Language Routines
with BASIC

PAGE

12-17

18-20

21-23

24-41

42-50

51-53

54-55

56-60

6l

BASIC 8001

INTRODUCTION

BASIC 8001 is a single~user, conversational programming language which
uses simple English-type statements and familiar mathematical notations
to perform an operation. BASIC 8001 is one of the simplest computer
languages to learn and once learned has the facility of advanced tech-
niques to perform more intricate manipulations or express a problem
more efficiently.

BASIC 8001 is in incremental compiler which provides immediate translation
and storage of user programs being input. This method decreases the
response time of a RUN command and increases execution speed. BASIC 8001
has provision for alphanumeric character string, I/O and string variables,
and allows user defined functions and assembly language subroutine calls
from user BASIC 8001 programs.

BASIC 8001 can be run on any Intecolor 8001, Intecolor 8051 or Compucolor
8001 with a minimum of 8K of user workspace.

LOADING AND RUNNING BASIC 8001

BASIC 8001 is provided in ROM and runs in ROM. BASIC 8001 is initiated by
typing the ESC key, then the W (BASIC) key. The dialogue described below
is printed. This is a once-only dialogue and does not occur after an ESC
key, and E key seguence. The READY message is printed after the ESC, E key
sequence.

BASIC 8001 prints:
BASIC 8001 v12/8/76 COPYRIGHT (C) 1976 BY CHARLES MUENCH
MAXIMUM RAM ADDRESS?

The user then types the highest RAM address that he has available or wants
to use and then keys a carriage return. -
MiDdLE OF FIRST RAM CARD: 45055 = 65535 ~20480 = AFFF #ex 231 BYres UusSep
One extra RAM card is 49151 =63535—16384 = BFFF hex. FoR INITIALIZATION
Two extra RAM cards is 57343 =26553S—= 8192 = DFFFhex, oF BASIC ZOO! STAMS.
Three extra RAM cards is 65529 =5535—6 = FFF9hex. 247 BYTES USED

AETER DOING ANYTH/NG.

BASIC 8001 then prints the message,
READY
and waits for a command or program line to be typed.
If BASIC 8001 has been initialized as above but has returned to the CRT
0.S. (by CPU Reset Key), then BASIC 8001 can be recalled without disturbing

existing programs by typing the ESC key, then the E key. BASIC 8001 will
then print the message READY.

If power fails, the CPU Reset key is hit or the unit is turned off,
the unit returns to the CRT operating mode.

If the CPU Reset key or ESC delete keys are hit, the unit leaves
BASIC 8001 and returns to the CRT operating mode. Any BASIC 8001
statement program is saved and can later be recalled if BASIC 8001
is re-entered by typing ESC, E.

BASIC 8001 has twenty-four (24) key word program statements, thirteen
(13) editing and command statements, eighteen (18) mathematical functions,
nine (9) string functions and eighteen (18) two-letter error messages.
With these command and statement capabilities, BASIC 8001 is extremely
simple to use and yet very versatile and powerful.

The next section provides an easy reference to BASIC 8001 capabilities.
If the user is unfamiliar with BASIC 8001 language, then the remaining
portion of this manual should be studied in sequence while having a
terminal at your fingertips to run the example given. This manual
should enable the user to become very proficient in BASIC 8001 when
finished. 1Intelligent Systems Corporation and Compucolor Corporation
have a number of BASIC 8001 programs on Floppy Tapes and are available
at nominal prices. In addition, both companies will pay for BASIC 8001
programs that are provided on floppy tape when properly documented and
accepted. Enjoy your self programming in BASIC 8001!

BASIC 8001

SUMMARY OF COMMANDS

1. BASIC 8001 STATEMENTS

The following summary of BASIC statements defines the general format for
the statement and gives a brief explanation of its use.

DATA value list

DEF function (argument) =
expression

DIM variable (n), variable (n,m),
variable $(n), variable $(n,m)

END

FOR variable=expressionl TO

expression2 STEP expression3

GOSUB line number

GOTO line number

THEN
IF expression GOTO line number

INPUT list

INPUT "string"; list

LET variable = expression

NEXT variable

ON X GOSUB line number list

ON X GOTO line number list

Used in conjunction with READ to input
data into an executing program.

Defines a user function to be used in
the program.

Reserves space for lists and tables
according to subscripts specified after
variable name.

Placed at the physical end of the
program to terminate program execution.

Sets up a loop to be executed the
specified number of times.

Used to transfer control to the first
line of a subroutine.

Used to unconditionally transfer control
to other than the next sequential line
in the program.

Used to conditionally transfer control
to the specified line of the program.

Used to input data from the terminal
keyboard, promps with "?".

Used to input data without promp character.

Used to assign a value to the specified
variable(s).

Placed at the end of a FOR loop to
return control to the FOR statement.

Call the Xth line number subroutine
after GOSUB.

Branch to the Xth line number after GOTO.

OUT I,X

PLOT expression

POKE I,X

PRINT list
PRINT expression

PRINT "string"

&

PRINT TAB(x)

READ variable list

REM comment

RESTORE

RETURN

STOP

WAIT X,I,J

Causes the X BYTE to be output to port I.

Sends the one BYTE result of the expression

to the 8001 CRT.

The result must be

between 0 and 255 binary.

Causes the X BYTE to be placed in memory
67. If I is negative

location O f I 327
then address is 65

Used to output dat
Prints results of

Prints a character

536 + I.
a to the terminal.
expression.

string.

Equivalent to the word PRINT.

Used to space to the specified column.

Used to assign the
DATA statement to
variables.

values listed in a
the specified

Used to insert explanatory comments into

a BASIC 8001 progr

am.

Used to reset data block pointer so the

same data can be u

Used to return pro

sed again.

gram control to the

statement following the last executed

GOSUB statement.

Used at the logical end of the program

to terminate execu

Causes the input p
exclusive OR'ed wi
AND'ed with BYTE I
wait until the res
continuing.

tion.

ort X to be read,

th BYTE J, and then

. The program will
ult is zero before

2. COMMANDS

The following key commands halt program execution, erase characters or delete

lines.

Key

CTRL/J or Line Feed

CTRL/M or RETURN

CTRL/K or ERASE LINE

CTRL/L or ERASE PAGE

CTRL/Z or CURSOR LEFT

Explanation

Terminates program execution. BASIC 8001
prints READY.

Must be typed to end every line typed
in or to indicate the end of an INPUT.

A colon is used to separate multiple
statements per line.

Deletes the entire current line.
Erases the CRT screen, but does not
change or disturb BASIC 8001 statements

in any way.

Deletes the last character entered and
echoes a cursor left.

The following cémmands list, load, save, erase and execute the program currently

in core.
Command

CLEAR

CLEAR X

LIST

LIST line number
LOAD I

LOAD ? i

RUN

RUN line number

SAVE I
SAVE T LOAD?T (/\\)Q.\'? U.S@gu\\

v

Explanation

Sets the array and string buffers to
nulls and zeroes.

Sets space for string variable to X
characters normally 50 characters.

Prints the user program currently in
core on the list output device.

Prints the program from the line speci-
fied to the end.

Does a NEW and inputs the program on track
#I from the READER input device.

Does not do a NEW but inputs and compares
the program on track #I with what is
existing in RAM Memory.

Executes the program in the buffer area.

Executes the program starting at line
number specified.

Outputs the program in core to track #I
of the WRITE output device.

NEW Erases the entire storage area.

CONT Continues execution after CTRL/J is
typed or after a STOP statement.

The following functions perform standard mathematical operations in BASIC 8001.

Name Explanation
ABS (x) Returns the absolute value of x.
ATN (x) Returns the arctangent of x as an angle

in radians in the range + or - pi/2.

I MP
CALL(x) TS Bm& MusT BE POKED N AT Call the user machine language routine

~24575 (LoBYTE) and — 24STY(Hi BYTE) at location OAOOO HEX. , -gs;g_'—imp
-y = Lo
25 — -
COS (x) Returns the cosine of xﬁgggiané?STq = Hr
EXP (x) Returns the value of eX where e=2.71828.

FRE (x) DOES NOTU INCLUDE FRE(Xs)'BSTES! Returns number of free BYTEs not in use.

INT (x) Returns the greatest integer less than
or equal to x.

INP(x) Returns a BYTE from input port 0 < x £ 255.

LOG(x) Returns the natural logarithm of x.

PEEK(X) Sawe os PoKE,\ocjﬁionS. Returns a BYTE from memory address 0<x<32767
or if X is negative the memory address
is 65536- x.

POS (%) Returns a value O to 79 current cursor
position.

Returns a random number between 0 and 1.

SGN (x) Returns a value indicating the sign of x.
N

SIN(x) Returns the sine of x radians.

SPC(x) DISTRUCTIVE T/).B(X) Causes x spaces to be generated.

SOR(x) Returns the square root of x.

TAB (x) Causes the cursor to tab to column

number X when used in a print statement.

TAN (x) Returns the tangent of x radians.

The string functions are:

Name Explanation

ASC(xS$) Returns as a decimal number the seven-bit
internal code for the first character of

string (x$).

CHRS (x) Generates a one-character string having the
ASCII value of x.

FRE(x$) Returns number of free string BYTES.
LEFTS (x$,1) Returns left most I characters of string
(x$) .

LEN (x$) Returns the number of characters in the

string (x$).

MIDS (x$,I,J) Returns J characters of string (x$)
starting at position I.

RIGHTS (x$,1) Returns right most I characters of string
(x9) .
STRS (x) Returns the string which represents the

numeric value of x.

VAL (x$) Returns the number represented by the string
(x9) .

CLEAR ¥ Reserves X ‘O\Il‘ﬁ’es '?or S'\"r'\nﬂ dofa. De‘gauH‘
value 1s 56¢ ‘o\fres. No single l'nPuT can
exceed 96 \oyfes-

ERROR MESSAGES

After an error occurs, BASIC 8001 returns to command level and types
READY. Variable values and the program text remain intact, but the program
cannot be continued and all GOSUB and FOR context is lost.

When an error occurs in a direct statement, no line number is printed.

Format of error messages:

Direct Statement XX ERROR

Indirect Statement XX ERROR IN YYYYY

In both of the above examples, "XX" will be thé error code. The "YYYYY"
will be the line number where the error occurred for the indirect statement.

The following are the possible error codes and their meanings:

ERROR CODE

BS

DD

CF

MEANING

Bad Subscript. An attempt was made to reference a
matrix element which is outside the dimension of the
matrix. This error can occur if the wrong number of
dimensions are used in a matrix reference; for instance,
LET A (1,1,1)=Z when A has been dimensioned DIM A(2,2).

Double Dimension. After a matrix was dimensioned,
another dimension statement for the same matrix was
encountered. This error often occurs if a matrix has
been given the default dimension 10 because a statement
like A(I)=3 is encountered and then later in the program
a DIM A(100) is found.

Call Function error. The parameter passed to a math
or string function was out of range.
CF errors can occur due to:
a) a negative matrix subscript (LET A(-1)=0)
b) an unreasonably large matrix subscript (>32767)
c) LOG-negative or zero argument
d) SOR-negative argument

e) A B with A negative and B not an integer.

f) A CALL (X) before the address of the machine
language subroutine has been patched in <sec¥g.7>

g) calls to MID$, LEFTS, RIGHTS$, INP, OUT, WAIT,
PEEK, POKE, TAB, SPC or ON...GOTO with an improper
argument.

ID

NF

OD

OM

ov

SN

RG

us

/0

CN

LS

(O)S

ST

™

Illegal Direct. You cannot use an INPUT or DEF
statement as a direct command.

NEXT without FOR. The variable in a NEXT statement
corresponds to no previously executed FOR statement.

Out of Data. A READ statement was executed but all
of the DATA statements in the program have already
been read. The program tried to read too much data
or insufficient data was included in the program.

Out of Memory. Program too large, too many variableg,
too many FOR loops, too many GOSUB's, too complicated
an expression or any combination of the above.

Overflow. The result of a calculation was too large
to be represented in BASIC's number format. If an
underflow occurs, zero is given as the result and
execution continues without any error message being
printed.

Syntax error. Missing parenthesis in an expression,
illegal character in a line, incorrect punctuation, etc.

RETURN without GOSUB. A RETURN statement was encountered
without a previous GOSUB statement being executed.

Undefined Statement. An attempt was made to GOTO, GOSUB
or THEN to a statement which does not exist.

Division by Zero.

Continue error. Attempt to continue a program when
none exists, an error occurred, or after a new line was
typed into the program.

Long String. Attempt was made by use of the concatenation
operator to create a string more than 255 characters long.

Out of String Space. Save your program on paper tape

or cassette, reload BASIC and allocate more string

s%ace or use smaller strings or less string vari%ples.
ALOCATE STRING SPACE wiTH CLEAR X. See Pa. 5

String Temporaries. A string expression was too complex.
Break it into two or more shorter ones.

Type Mismatch. The left hand side of an assignment
statement was a numeric variable and the right hand
side was a string, or vice versa; or, a function
which expected a string argument was given a numeric
one or vice versa.

10

UF

Undefined Function. Reference was made to a user
defined function which had never been defined.

11

BASIC 8001 ARITHMETIC

Il NUMBERS

BASIC treats all numbers (real and integer) as decimal numbers---
that is, it accepts any decimal number and assumes a decimal point
after an integer. The advantage of treating all numbers as decimal
numbers is that any number or symbol can be used in any mathematical
expression without regard to its type. Numbers used must be in the
approximate range 10-38¢N<10138,

In addition to integer and real formats, a third format is recognized
and accepted by BASIC 8001. This format is called exponential or
E-type notation, and in this format, a number is expressed as a
decimal number times some power of 10. The form is:

xXEn

where E represents "times 10 to the power of"; thus the number is
read "xx times 10 to the power of n". For example:

23.4E2=23.4*10%2 = 2340

Data may be input in any one or all three of these forms. Results
of computations are output as decimals if they are within the range
.01 n 999999; otherwise, they are output in E format. Numbers are
sto;éa_up to 24 bits of significance. If a number with more than
24 bits is entered, it is truncated and stored as 24 bits. BASIC
8001 handles six significant digits in normal operation and prints
6 decimal digits as illustrated below:

Value Typed In Value Output by BASIC 8001
.01 .01
.0099 9.90000E-03
999999 999999
1000000 1.00000E+06

BASIC automatically suppresses the printing of leading and trailing
zeroes in integer and decimal numbers, and, as can be seen from the
preceding examples, formats all exponential numbers in the form:

(sign) x.xxxxXE(+ or -)n
where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponential value.

For example:

-3.47021E+08 is equal to -347,021,000
7.26000E-04 is equal to .00726

Floating point format is used when storing and calculating most numbers.

12

NOTE

Because core size limitations prohibit the storage of
infinite binary numbers, some numbers cannot be expressed
exactly. In BASIC 8001, accuracy is approximately 5-%
digits, and errors in the 6th digit can occur. For
example, .999998 as a result of some functions may be
equal to 1. Discrepancies of this type are magnified when
such a number is used in mathematical operation.

IT. VARIABLES
A variable in BASIC 8001 is an algebraic symbol representing a number, and

is formed by a single letter, a letter optionally followed by a single
digit or by double letters. For example:

NOTE : iables may be o 5+frin6 of
Acceptable Variables Unacceptable Variables
. =8eQ
L‘“ﬂ"“”“¥ws ?re I 2C-a digit cannot begin a variable.
“QVY uﬁﬁuL&br\nheraﬁt ANgTHING
. S
RiEe . B3 podicd RESEMBLE ll-numbers alone cannot form a
] umen"{'a*mq\ W Q A BAS\C CoMMAMD S —
AB 4 2 LEFTMOST
CHARACTERS ARE
X SIGNVF\GANT.

Subscripted and string variables are described in later sections. The
user may assign values to variables either by indicating the values in
a LET statement, or by inputting the values as data; these operations
are discussed in another chapter.

The value assigned to a variable does not change until the next time a
statement is encountered that contains a new value for that variable.
All variables are set equal to zero (0) when the RUN command is issued.
It is only necessary to assign a value to a variable when an initial
value other than zero is required. However, good programming practice
would be to set variables equal to O wherever necessary. This ensures
that later changes or additions will not misinterpret values.

IIT. SUBSCRIPTED VARIABLES

In addition to the simple variables described in the preceding section,
BASIC 8001 allows the use of subscripted variables. Subscripted variables
provide additional computing capabilities for dealing with lists, tables,
matrices, or any set of related variables. In BASIC 8001 variables are
allowed from 1 to 31 subscripts.

The name of a subscripted variable is any acceptable BASIC 8001 variable
name followed by one or more integer expressions in parentheses within
the range 0-32767. For example, a list might be described as A(I) where
I goes from O to 5 as shown below:

A(0),Aa(1),A(2),A(3),A(4),A(5)

13

This allows reference to each of the six elements in the list, and can
be considered a one dimensional algebraic matrix as follows:

A two-dimensional matrix B (I,J) can be defined in a similar manner:
B(O0,0),B(0,1),B(0,2),. . .,B(OJ),. .,B(1,J)

and graphically illustrated as follows:

B(0,0) B(0,1) B(0,2) B(0,J)

B(1,0) B(1,1) B(1,2) . B(1,J)

B(2,0) B(2,1) B(2,2) B(2,3) B(2,J)

B(3,0) B(3,1) B(3,2) B(3,J)
B(L,1) B(T,2)

Subscripts used with subscripted variables throughout a program can be
explicitly stated or be any legal expression. If the value of the expression
is non-integer, the value is truncated so that the subscript is an integer.

It is possible to use the same variable name as both a subscripted and
unsubscripted variable. Both A and A(I) are valid variables and can be
used in the same program. The variable A has no relationship to any
element of the matrix A(I). BASIC 8001 will accept the same variable
name as both a singly and a doubly subscripted variable name in the same
program.

Character strings may also be subscripted variable arrays, and may have
the same variable name i.e., AS$(I).

A Dimension (DIM) statement is used with subscripted variables to define

the maximum number of elements in a matrix. ("Matrix" is the subscripted
variable.) The DIM statement is discussed in a later paragraph.

14

If a subscripted variable is used without appearing in a DIM statement,
it is assumed to be dimensioned to length 10 in each dimension (that
is, having eleven elements in each dimension, O through 10). However,
all matrices should be correctly dimensioned in a program.

IV. EXPRESSIONS

An expression is a group of symbols which can be evaluated by BASIC 8001l.
Expressions are composed of numbers, variables, functions, or a
combination of the preceding separated by arithmetic or relational
operators.

The following are examples of expressions acceptable to BASIC 8001:

Arithmetic Expressions String Expressions

4 AS$+BS$+"ABC"
A7* (BA2+1)

Not all kinds of expressions can be used in all statements, as is
explained in the sections describing the individual statements.

V. ARITHMETIC OPERATIONS

BASIC 8001 performs addition, subtraction, multiplication, division and
exponentiation. Formulas to be evaluated are represented in a format
similar to standard mathematical notation. The five operators used in

writing most formulas are:

Symbol

Operator Meaning
OR Logical and bitwise "OR"
AND Logical and kitwise "AND"
NOT Logical and bitwise "NOT"
+ A + B Add B to A
- A - B Subtract B from A
* A * B Multiply A by B
/ A/ B Divide A by B
N ANB Exponentiation (Raise A to

the Bth power)
Unary plus and minus are also allowed, e.g., the - in -A+B or the + in
+X-Y. . Unary plus is ignored. Unary minus is treated as a zero minus
the variable, e.g., -A+B would be handled as O0-A+B.
VI. PRIORITY OF ARITHMETIC OPERATIONS
When more than one operation is to be performed in a single formula, as

is most often the case, rules are observed as to the precedence of the
operators.

15

In any given mathematical formula, BASIC 8001 performs the arithmetic operations
in the following order of evaluation:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized expression.

2. In the absence of parentheses, the order of priority is:
2. Exponentiation (proceeds from left to right).
b. Unary minus.
c. Multiplication and Division (of equal priority).
d. Addition and Subtraction (of equal priority).
e. Logical operators in the order NOT, AND, then OR.
3. If either 1 or 2 above does not clearly designate the order of
priority, then the evaluation of expressions proceeds from

left to right.

The expression AABAC is evaluated from left to right as follows:

1. AAB step 1
2. (result of step 1)AC = answer

The expression A/B*C is also evaluated from left to right since multi-
plication and division are of equal priority:

1. A/B step 1
2. (result of step 1l)*C = answer

The expression A+B*CAD is evaluated as:

1. CAD step 1
2. (result of step 1)*B step 2
3. (result of step 2)+A = answer

Parentheses may be nested, or enclosed by a second set (or more) of
parentheses. 1In this case, the expression within the innermost paren-
theses is evaluated first, and then the next innermost, and so on, until
all have been evaluated.

In the following example:

A=7* ((BA2+4) /X)

The order of priority is:

16

step 1

2. (result of step 1)+4 = step 2

3. (result of step 2)/X step 3

4. (result of step 3)*7 A
Parentheses also prevent any confusion or doubt as to how the expression
is evaluated. For example:

A*BA2/7+B/C*DA2
((A*BA2) /7+ ((B/C) *DA2)

Both of these formulas are executed in the same way, but the second is
easier to understand.

Spaces may be used in a similar manner. Since the BASIC 8001 interpreter
ignores spaces (except when enclosed in quotation marks), the two
statements:

1 LET B = DA2 + 1
1PLETB=DA2+1

are identical, but spaces in the first statement provide ease in reading.
When the statement is subsequently printed, extra spaces are ignored.

VII. RELATIONAL OPERATORS

Relational operators allow comparison of two values and are used to
compare arithmetic expressions or strings in an IF. . . THEN statement.
The relational operators are:

Mathematical BASIC 8001
g Symbol Example Meaning
A B A is equal to B.
< < A <B A is less than B.
¢ or =4 A& B A is less than or
equal to B.
> > A> B A is greater than B.
2 >=or =? = A)=B A is greater than
or equal to B.
{? or »< ad>B A is not equal to B.
The symbols =< =) ,»& are accepted by BASIC 8001 but are converted to

{=, 7=, and{? and are shown in that form in a listing.

17

A\\ varodoles wkalize W.‘H". °‘_5¢‘(oyfe, Pof‘en”{'{qj [er\ﬂ_tx.

<4

_— C(/xahge Omﬂu CLEAR X s’fcd‘emenﬁ See Pg.g,

BASIC 8001 STRINGS

CLEAR X RESERVES X BYTES FOR STRING DATA
I. STRINGS

The previous section described the manipulation of numerical information
only; however, BASIC 800l also processes information in the form of
character strings. A string, in this context, is a sequence of characters
treated as a unit. A string can be composed of alphabetic, numeric, or al-
phanumeric characters. (An alphanumeric string is one which contains
letters, numbers, spaces or any combination of characters.) A character
string can be 255 characters long. Strings cannot be typed on more than
one terminal line since a carriage return terminates the command.

II. STRING VARIABLES

Any variable name followed by a dollar sign ($) character indicates a
string variable. For example:

AS
Cc7$

are simple string variables and can be used, for example, as follows:

LET AS$="HELLO"
PRINT AS

Note that the string variable A$ is separate and distinct from the variable
A.

In BASIC 8001, all control characters above control code F (or 6) are legal
within Quotes (") except for the following:

Control Code K or 1l or erase line
Control Code L or 12 or erase page
Control Code M or 13 or return
Control Code Z or 26 or cursor left

ITT. SUBSCRIPTED STRING VARIABLES

Any list of matrix variable name followed by the $ character denotes the
string form of that variable. For example:

VS (n) M2$ (n)
CS$(m,n) G1lS (m,n)

where m and n indicate the position of the matrix element within the
whole.

The same name can be used as a numeric variable and as a string variable

in the same program with no restriction. A one- and a two-dimensional
matrix can have the same name in the same program. For example:

18

A A(n) A(m,n)
S AS$ (m,n) AS (m,n(

can all be used in the same program.

String lists and matrices are defined with the DIM statement as are
numerical lists and matrices.

IV. STRING OPERATIONS
Concatenation

Concatenation puts one string after another without any intervening
characters. It is specified by a plus sign (+) and works only with
strings. The maximum length of a concantenated string is 255 char-
acters.

For example:

1g READ AS$, BS, CS$

2¢ DATA "11", "33", "22"
3@ LET D$ = AS$S+CS+BS

35 PRINT D$

4¢ END

RUN

112233

V. RELATIONAL OPERATIONS

When applied to string operands, the relational operators indicate
alphabetic sequence. The comparison is done on the basis of the ASCII
value associated with each character in the strings being compared. For
example:

55 IF AS$<B$ THEN 100

When line 55 is executed, the first characters of each string (A$ and
B$) are compared, then the second characters of each string and so on
until the character in A$ is less than the character in B$. Then
execution continues at line 100. Essentially, the strings are compared
for alphabetic order. The next page contains a list of the relational
operators and their string interpretations.

In any string comparison, trailing blanks are ignored (i.e., "ABC" is
equivalent to "ABC ").

FRE (X) = AVAILABLE BUTES OF PROGRAM MEMORY.
FRE(x§)=AVAILABLE BATES OF STRING MEMORY.

TorAL AVAILABLE MEMORS 15 FRE(A + FRE(XE)...can adijusT & fransfer by cLese x.

19

BASIC 8001

Relational Operators Used With
String Variables

Operator Example Meaning
= AS$ = BS The strings A$ and B$ are al-
phabetically equal.
< As$ € BS The string AS$ alphabetically
precedes BS.
> AS$ > BS The string AS$ alphabetically
follows BS.
€= or = ¢ AS £ = B$S The string A$ is equivalent to
or precedes B$ in alphabetical
sequence.
>=or =) A$? = BS The string A$ is equivalent to
or follows B$ in alphabetical
sequence.
<> or»<& as <> BS The strings AS$ and B$ are not

alphabetically equal.

20

BASIC 8001 IMMEDIATE MODE

I. USE OF IMMEDIATE MODE FOR STATEMENT EXECUTION

It is not necessary to write a complete program to use BASIC 8001.
Most of the statements discussed in this manual can be included in a
program for later execution or given on-line as commands, which are
immediately executed by the 8080 CPU. This latter facility makes
BASIC 8001 an extremely powerful calculator.

BASIC 8001 distinguishes between lines entered for later execution
and those entered for immediate execution solely by the presence (or
absence) of a line number. Statements which begin with line numbers
are stored; statements without line numbers are executed immediately
upon being entered to the system. Thus the line:

1 PRINT "THIS IS A COMPUCOLOR 8001"
produces no action at the console upon entry, while the statement:
PRINT "THIS IS A COMPUCOLOR 8001"
causes the immediate output:
THIS IS A COMPUCOLOR 8001
ITI. PROGRAM DEBUGGING
Immediate mode operation is especially useful in two areas: program
debugging and the performance of simple calculations in situations which

do not occur with sufficient frequency or with sufficient complications
to justify writing a program.

In order to facilitate debugging a program, STOP statements can be
liberally placed throughout the program. Each STOP statement causes
the program to halt, at which time the various data values can be
examined and perhaps changed in immediate mode. The

GO TO XXXXX

command is used to continue program execution (where xxxxx is the number
of the next program line to be executed). GOSUB and IF commands could
also be used. The values assigned to variables when the RUN command was
executed remain intact until a NEW, CLEAR or another RUN command is
executed.

If the STOP occurs in the middle of a FOR loop, modifications cannot be
made to the section of the program preceding the FOR.

21

When using immediate mode, nearly all the standard statements can be
used to generate or print results.

If CTRL/J or linefeed is used to halt program execution, the GO TO XXXX or CONT
command can be used to continue execution, since CTRL J or linefeed

does print the number of the line where execution stopped. It is

easy to know where to resume the program.

ITT. MULTIPLE STATEMENTS PER LINE

Multiple statements can be used on a single line in immediate mode.
For example:

A=1:PRINT A
1

Program loops are allowed in immediate mode; thus a table of square
roots can be produced as follows:

FOR I=1 TO 1@: PRINT I, SQR (I):NEXT I

.41421
.732¢5

.23607
.44949
.64575
.82843

O 00U b W
W wNDNDNDDNDND -

19 .16228

READY
IV. RESTRICTIONS ON IMMEDIATE MODE

The INPUT statement cannot be used in immediate mode and such use results
in the following error message:

ID ERROR
READY

Certain commands, while not illegal, make no logical sense when used in
immediate mode. Commands in this category are DEF, DIM and DATA.

Also since user functions are not defined until the program is executed,
function references in immediate mode cause an error unless the program
containing the definition was previously executed.

Thus, the following dialogue might result if a function was defined in
a user program and then referenced in immediate mode.

1¥ DEF FNA(X) = XA2 + 2*X:REM SAVED STATEMENT
PRINT FNA (1) :REM IMMEDIATE MODE

UF ERROR

READY 29

but if the sequence of statements is:

10 DEF FNA(X) = XA2+2*X:REM SAVED STATEMENT
RUN

READY

PRINT FNA (1)
3

READY

the immediate mode statement is executed.

23

BASIC 8001 STATEMENTS

A user program is composed of lines of statements containing instructions

to BASIC 8001. Each line of the program begins with a line number that identi-
fies that line as a statement and indicates the order of statement execution.
Each statement starts with an English word specifying the type of operation

to be performed. The statement lines are terminated with the RETURN key

which is non-printing.

I. STATEMENT NUMBERS

An integer number is placed at the beginning of each line in a BASIC 8001
program. BASIC 8001 executes the statements in a program in numerically
consecutive order regardless of the order in which they were typed.
Statement numbers must be within the range 0 to 65529. When first writing
a program, it is advisable to number lines in increments of five or ten to
allow insertion of forgotten or additional lines when debugging the program.

All BASIC 8001 statements and computations must be written on a single line;
they cannot be continued onto a following line. However, more than one
statement may be written on a single line when each statement after the
first is preceded by a colon (:). For example:

1¢ INPUT A,B,C
is a single statement line, whereas
20 LET X=11: PRINT X,Y,Z: IF X=A THEN 1¢

is a multiple statement line containing three statements: LET, PRINT, and
IF. Most statements may be used anywhere in a multiple statement line;,
exceptions are noted in the discussion of each statement. Only the first
statement on a line can (and must) have a line number., It should be re-
membered that program control cannot be transferred to'a statement within a
line, but only to the first statement of a line.

II. REMARK STATEMENT

It is often desirable to insert notes and messages within a user program.
Such data as the name and purpose of the program, how to use it, how
certain parts of the program work, and expected results at various points
are useful things to have present in the program for ready reference by
anyone using that program.

The REMARK or REM statement is used to insert remarks or comments into a
program without these comments affecting execution. Remarks do, however,

use core area which may be needed by an exceptionally long program.

The REMARK statement must be preceded by a line number and may be used
anywhere in a multiple statement line. The message itself can contain

24

any printing character on the keyboard. BASIC 8001 completely ignores
anything on a line following the letters REM. (The line number of a REM
statement can be used in a GOTO or GOSUB statement, see sections pertaining
to destination of a jump in the program execution.) Typical REM statements
are shown below:

10 REM- THIS PROGRAM COMPUTES THE
11 REM- ROOTS OF A QUADRATIC EQUATION

IIT. THE ASSIGNMENT STATEMENT -~ LET

The LET statement assigns a value to the specified variable(s). The
general format of the LET statement is:

LET variable = expression

where variable is a numeric or string variable and expression is an
arithmetic or string expression. All items in the statement must be
either string or numeric; they cannot be mixed. The word LET is optional.

The LET statement does not indicate algebraic equality, but performs
calculations within the expression (if any) and assigns the value to the
variable.

The meaning of the equal (=) sign should be clarified. 1In aigebraic
notation, the formula X=X+1 is meaningless. However, in BASIC 8001 (and
most computer languages), the equal sign designates replacement rather

than equality. Thus, this formula is actually translated: "add one to
the current value of X and store the new result back in the same variable
X". Whatever value has previously been assigned to X will be combined

with the value 1. An expression such as A=B+C instructs the computer to
add the values of B and C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously assigned value,
but only in terms of B and C. Therefore, if A has been assigned any value
prior to its use in this statement, the old value is lost; it is instead
replaced by the value B+C.

Example: X=Y=2 =48 s)‘(=ﬁ8}_‘ﬂ =98, Z:qg , Vs
where we i§ 9sz=98 19n X.
LET X=2 Assigns the value 2 to the variable X.
LET X=X+1+Y Adds 1 to the current value of X then adds the
value of Y to the result and assigns that value
to X.

IV. THE DIMENSION STATEMENT - DIM

The DIMension statement is used to define the maximum number of elements
in a matrix. The DIM statement is of the form:

DIM variable(n), variable (n,m), variable$ (n), variable$ (n,m)

where variables specified are indicated with their maximum subscript value(s).

25

For example:

1 DIM X(5), Y(4,2), A(1lg ,19)
12 DIM A4(1@@), AS$(25)

Only integer constants (such as 5 or 5070) can be used in DIM statements
to define the size of a matrix. Variables cannot be used to specify the
bounds of arrays. Any number of matrices can be defined in a single DIM
statement as long as their representations are separated by commas.

The first element of every matrix is automatically assumed to have a “ub-
script of zero. Dimensioning A(6,10) sets up room for a matrix with 7
rows and 11 columns. This zero element is illustrated in the following
program:

10 REM - MATRIX CHECK PROGRAM
2@ DIM A(6,19)

3¢ FOR I=g TO 6

49 LET A(I,@) =1

5¢ FOR J=@ TO 1¢

6@ LET A(g,J) = J

7¢ PRINT A(I,J);

8@ NEXT J:PRINT:NEXT I

9¢ END

RUN

()N, '~ VI Sl i N
AT ST ST SIR NI SR
ASIASIE SIS ST SIS
ASIASIR ST ST ST S I
ASIASIR ST ST ST SR
ASIASI ST ST ST SIS
ASIASI ST ST ST ST
ASIASIR ST ST ST SERN]
AT ST SER SIR SIS o)
RS IR SIS IR ST S I SEEN)
ASIASIRASIR ST ST S

READY

Notice that a variable has a value of zero until it is assigned another
value.

Whenever an array is dimensioned (n,m), the matrix is allocated m+l, n+l
elements. Core space can be conserved by using the Oth element of the
matrix. For example, DIM A(5,9) dimensions a 6 x 10 matrix which would
then be referenced beginning with the A(0,0)

The size and number of matrices which can be defined depend upon the
amount of storage space available.

A DIM statement can be placed anywhere in a multiple statement line and
can appear anywhere in the program. A matrix can only be dimensioned
once. DIM statements need not appear prior to the first reference to an
array, although DIM statements are generally among the first statements

of a program to allow them to be easily found if any alterations are later
required.

26

All arrays specified in DIM statements are allocated space when the RUN
command is executed.

V. PLOT STATEMENT

The PLOT Statement is used to output the 8 bit BYTE value of an expression
to the CRT Screen. The general format of the PLOT Statement is:

10 PLOT expression

The expression can be any combination of variables which will evaluate
to a positive value between 0 and 255.

The following example will plot a point on the CRT Screen at Location
80, 9% (X,Y):

10 X=80 : ¥Y=96

20 PLOT 2 : REMARK THE 8001 PLOT MODE CODE

30 PLOT X : PLOT Y : REMARK PLOTS POINT AT 80, 96

40 PLOT 255 : REMARKS THE 8001 PLOT MODE ESCAPE CODE

As another example enter: 69 -
65: PLOTGH: PLOTHT: PLOTEE: '
PLOT 65 A DLFG
A

READY K. pasic DOES NoT (..F)(C.RY) BETWEEN PLOTS.

It can be seen that (since 65 is the decimal ASCII value for A) PLOT 65
is the same as PRINT "A";

VI. PRINT STATEMENT

The PRINT statement is used to output data to the terminal. The general
format of the PRINT statement is:

1) PRINT list
The list is optional and can contain expressions, text strings, or both.
When used without the list, the PRINT statement:

25 PRINT

Dok NOT ERASE, TUST SX1PS DOwN.

causes a blank line to be output on the 8001 CRT Screen (a carriage return/
line feed operation is performed) .

2) PRINT Expression
PRINT statements can be used to perform calculations and print results.

Any expression within the list is evaluated before a value is printed.
For example:

27

71

1¢ LET A=l : LET B=2: LET C=3+A
2¢ PRINT

3¢ PRINT A+B4C

RUN

7

READY
All numbers are printed with a preceding and following blank space.

The PRINT statement can be used anywhere in a multiple statement line.
For example:

19 A=1: PRINT A: A=A+5: PRINT: PRINT A
prints the following on the terminal when executed:

1

6

READY
Notice that the terminal performs a carriage return/line feed at the end
of each PRINT statement. Thus the first PRINT statement outputs a 1 and

a carriage return/line feed; the second PRINT statement the blank line;
and the third PRINT statement, a 6 and another carriage return/line feed.

3) PRINT Strings

The PRINT statement can be used to print a message or string of characters,
either alone or together with the evaluation and printing of numeric values.
Characters are indicated for printing by enclosing them in double quotation
marks. For example:

17 PRINT "TIME'S UP"
2¢ PRINT "NEVERMORE"
RUN
TIME'S UP
NEVERMORE
READY
As another example, consider the following line:
4% PRINT "AVERAGE GRADE IS";X

which prints the following (where X is equal to 83.4):

AVERAGE GRADE IS 83.4

28

When a character string is printed, only the characters between the
quotes appear; no leading or trailing spaces are added. Leading and
trailing spaces can be added within the quotation marks using the key-
board space bar; spaces appear in the printout exactly as they are typed
within the quotation marks.

When a comma separates a text string from another PRINT list item, the
item is printed at the beginning of the next available print zone.
Semicolons separating text strings from other items are ignored. Thus,
the previous example could be expressed as:

4@ PRINT "AVERAGE GRADE IS" X

and the same printout would result. A comma or semicolon appearing as
the last item of a PRINT list always suppresses the carriage return/line
feed operation.

BASIC 8001 does an automatic carriage return/line feed if a string is
printing past column 80.

4) Use of "," and ";"

BASIC 8001 considers the 8001 CRT Screen to be divided into ten zones of
eight spaces each. When an item in a PRINT statement is followed by a
comma, the next value to be printed appears in the next available print
zone. For example:

1¢ LET A=3: LET B=2
2¢ PRINT A,B,A+B,A*B,A-B,B-A

When the preceding lines are executed, the following is printed:
3 2 5 6 1 -1
Notice each character is 8 spaces from the next character.

Two commas together in a PRINT statement cause a print zone to be skipped.
For example:

14 LET A=14/ LET B=2

2@ PRINT A,B,,A+B

RUN

1 2 3

READY
If the last item in a PRINT statement is followed by a comma, no carriage

return/line feed is output, and the next value to be printed (by a later
PRINT statement) appears in the next available print zone. For example:

29

19 A=1:B=2:C=3

2@ PRINT A, :PRINT B: PRINT C
RUN

1 2

3

READY

If a tighter packing of printed values is desired, the semicolon
character can be used in place of the comma. A semicolon causes no
further spaces to be output other than the leading and trailing space
automatically output with each number. A comma causes the print head
to move at least one space to the next print zone or possibly perform
a carriage return/line feed. The following example shows the effects
of the semicolon and comma.

1¢ LET A=1/ B=2/ C=3
2@ PRINT A;B;C;

3¢ PRINT A+l;B+1;C+1l
4¢ PRINT A,B,C

RUN

1 2 3 2 3 4

1 2 3

READY

The following example demonstrates the use of the formatting characters ,
and ; with text strings:

12¢ PRINT "STUDENT NUMBER"X, "GRADE ="G;"AVE. ="A;
139 PRINT "NO. IN CLASS ="N

could cause the following to be printed (assuming calculations were done
prior to line 130):

STUDENT NUMBER 119¢5@ GRADE = 87 AVE. = 85.44 NO. IN CLASS = 26

5) PRINT Statement - TAB Function
The TAB function is used in a PRINT statement to write spaces to the spec-
ified column on the output device. The columns on the output devices are
numbered 1 to 80.

The form of the command is:

PRINT TAB (x)

where (x) is the column number in the range 0-255. (If X exceeds 80,
however, every other consecutive line is tabbed until the number of
spaces to be output is less than or equal to 80). If the column number

specified is greater than 255 or negative, an error message is printed
as follows:

CF ERROR
READY

30

If (x) is non-integer, only the integer portion of the number is
used.

If the column number (x) specified is less than or equal to the
current column number, the TAB function has no effect.

VII. INPUT STATEMENT

The INPUT statement is used when data is to be input from the terminal
keyboard during program execution. The form of the statement is:

1) INPUT list
where list is a list of variable names separated by commas.
For example:

1¢ INPUT A,B,C

causes the computer to pause during execution, print a question mark,
and wait for input of three numeric values separated by commas. The
values are input to the computer by typing the RETURN key.

If too few values are entered, BASIC 8001 prints another ? to indicate
that more data is needed. If too many values are typed, the excess

data on that line is ignored and the message below is printed but program
still continues. The values entered in response to the INPUT statement
cannot be continued on another line and are terminated by the RETURN

key. Values must be separated by commas, if more than one value is

input on the same line.

When there are several values to be entered via the INPUT statement,
it is helpful to print a message explaining the data needed. For

example:

1¢ PRINT "YOUR AGE IS";
2@ INPUT A

2) INPUT "string"; list

The INPUT statement can also contain quoted strings. The above example
could be written:

10 INPUT "YOUR AGE IS?";A
Note that when a quoted string is included in a INPUT statement, the
normal ? is not printed as a prompt character, and if desired, must

be included as shown within the quotes above.

This feature allows BASIC 8001 to be programmed to handle fill-in-the-
forms type of applications.

31

VIII. DATA STATEMENT

The DATA statement is used in conjunction with the READ statement to
enter data into an executing program. One statement is never used
without the other. The form of the statement is:

DATA value list

where the value list contains the numbers or to be assigned to
the variables listed in a READ statement. Individual items in the value
list are separated by commas; strings must be enclosed in quotation
marks.

For example:

159 DATA 4,7.2,3,"ABC"
17¢ DATA 1,34E-3, 3.17311

The location of DATA statements is arbitrary as long as they appear in
the correct order; however, it is good practice to collect all DATA
statements near the end of the program.

When the RUN command is executed, BASIC 8001 searches for the first DATA
statement and saves a pointer to its location. Each time a READ statement
is encountered in the program, the next value in the data statement is
assigned to the designated variable. If there are no more values in that
DATA statement, BASIC 8001 looks for the next DATA statement.

IX. READ STATEMENT

A READ statement is used to assign the values listed in a DATA statement
to the specified variables. The READ statement is of the form:

READ variable list

The items in the variable list may be simple variable names or string
variable names and are separated by commas. For example:

1¢ READ A, BS$, C(1)
2@ DATA 12, "12",.12E2

Since data must be read before it can be used in a program, READ statements
generally occur near the beginning of the program. A READ statement can be

placed anywhere in a multiple statement line.

If there is no data available in the data table for the READ to store, the
out of data message below is printed:

OD. ERROR IN XXXXX

in ‘" : data list in excess of those needed by the program's READ
are ignored.

32

X. RESTORE STATEMENT

The RESTORE statement causes the program to reuse the data from the
first DATA statement and is of the form:

RESTORE
For example:
3¢ RESTORE

causes the next READ statement following line 30 to begin reading data
from the first DATA statement in the program, regardless of where the
last value was found.

A further example of .the use of RESTORE follows:

15 READ B,C,D

55 RESTORE
6¢ READ E,F,G

8¢ DATA 6,3,4,7,9,2

igg END

The READ statements in lines 15 and 60 both read the first three data
values provided in line 80. (If the RESTORE statement had not been
inserted before line 60, then the second READ would pick up data in
line 80 starting with the fourth value.)

Since the values are being read as though for the first time, the same
variable names may be used the second time through the data, if desired.

To skip unwanted values, replacement, or dummy, variables may be inserted.
For example:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
2¢ READ N

25 PRINT "VALUES OF X ARE:"

39 FOR I=1 TO N

49 READ X

53 PRINT X,

6@ NEXT I

7¢ RESTORE

185 PRINT

19¢ PRINT "SECOND LIST OF X VALUES"

2¢@ PRINT "FOLLOWING RESTORE STATEMENT:"
21¢ FOR I=1 TO N

22¢ READ X

23@ PRINT X,

24 NEXT I 33

250 DATA 4,1,2
251 DATA 3,4
3¢@ END

RUN
VALUES OF X ARE:

1 2 3 4
SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 i 2 3
READY

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, BASIC
prints:

4 1 2 3

To circumvent this, a dummy variable could be inserted to pick up and
store the first value. This variable would not be represented in the
PRINT statement, so the output would be the same each time through
the list.

XI. GOTO STATEMENT

The GOTO statement is used when it is desired to unconditionally transfer
to some line other than the next sequential line in the program. 1In
other words, a GOTO statement causes an immediate jump to a specified
line, out of the normal consecutive line number order of execution. The
general format of the statement is as follows:

GOTO line number

The line number to which the program jumps can be either greater or less
than the current line number. It is thus possible to jump forward or
backward within a program.

For example,

1¢ LET A=2

20 GOTO 5¢

3¢ LET A=SQR(A+14)
5¢ PRINT A,A*A
RUN

causes the following to be printed:

2 4
When the program encounters line 20, control transfers to line 50; line
50 is executed, control then continues to the line following line 50.

Line 30 is never executed. Any number of lines can be skipped in either
direction.

34

When written as part of a multiple statement line, GOTO should always
be the last statement on the line, since any statement following the
GOTO on the same line is never executed. For example:

11 LET A=ATN(B2) :PRINT A:GOTO 5¢
XII. IF-THEN, IF-GOTO STATEMENTS

The IF-THEN statement is used to transfer conditionally from the normal
consecutive order of statement numbers, depending upon the truth of some
mathematical relation or relations. The basic format of the IF statement
is as follows:
THEN
IF expression rel.op. expression line number
GOTO

where expression is an arithmetic or string expression.

Expressions cannot be mixed; both must be string

or both must be numeric. Numeric comparisons are
handled as described in the ARITHMETIC Section. String
comparisons are performed on the ASCII values of

the strings as described in the STRING Section.

rel. op. is one of the operators described in the ARITHMETIC
Section.
line number is the line of the program to which control is

conditionally passed.

If the value of the expression is true, control passes to the line number
specified.

If the value of the expression is false, control passes to the next state-
ment in sequence.

Examples:
1¢ IF A=B THEN 2@:PRINT "A B"
15 STOP
2@ PRINT A+B
19 IF A <> 1g GOTO 2@ :PRINT A
15 STOP
2@ D=A+B*C

19 IF A$<BS$ THEN 2 :STOP
2@ PRINT AS

XITI. FOR-NEXT STATEMENTS

FOR and NEXT statements define the beginning and end of a loop. (A loop
is a set of instructions which are repeated over and over again, each time

35

being modified in some way until a terminal condition is reached.)
The FOR statement is of the form:

FOR variable = expressionl TO expression2 STEP expression3
where
variable must be a nonsubscripted numeric variable.
expression is an arithmetic expression which may be non-
integer.

The variable is the index; expressionl is the initial value; expression2,
the terminal value and expression3, the increment value.

For example:
15 FOR K=2 TO 2@ STEP 2

causes the program execution of the designated loop as long as K is
less than or equal to 20. Each time through the loop, K is incremented
by 2, so the loop is executed a total of 10 times. When K=20, program
control passes to the line following the associated NEXT statement.

The index variable must be unsubscripted, although a common use of such
loops is to deal with subscripted variables using the control variable

as the subscript of a previously defined variable. The expressions in

the FOR statement can be any acceptable BASIC 8001 expression.

The NEXT statement signals the end of the loop which began with the
FOR statement. The NEXT statement is of the form:

NEXT variable

where the variable is the same variable specified in the FOR statement.
Together the FOR and NEXT statements define the boundaries of the
program loop. When execution encounters the NEXT statement, the computer
adds the STEP expression value to the variable and checks to see if the
variable is still less than or equal to the terminal expression value.
When the variable exceeds the terminal expression value, control falls
through the loop to the statement following the NEXT statement. Note

the variable is not necessary since when a NEXT statement is encountered
it is assumed it is for the appropriate FOR loop variable.

If the STEP expression and the word STEP are omitted from the FOR state-
ment, +1 is the assumed value. Since +1 is a common STEP value, that
portion of the statement is frequently omitted.

The expressions within the FOR statement are evaluated once upon initial
entry to the loop. The test for completion of the loop is made after
each execution of the loop. (If the test fails initially, the loop is
still executed once.)

36

The index variable can be modified within the loop. When control falls
through the loop, the index variable retains the value used to fall through
the loop.

The following is a demonstration of a simple FOR-NEXT loop. The loop
is executed 10 times; the value of I is 11 when control leaves the loop;
and +1 is the assumed STEP value:

1§ FOR I=1 TO 1@
2@ PRINT I

3¢ NEXT I

49 PRINT I

The loop itself is lines 10 through 30. The numbers 1 through 10 are
printed when the loop is executed. After I=10, control passes to line
40 which causes 11 to be printed. If line 10 had been:

1 FOR I = 1% TO 1 STEP -1

the value printed by line 40 would be {.

1§ FOR I = 2 TO 44 STEP 2
2¢ LET I = 44
3¢ NEXT I

The above loop is only executed once since the value of I=44 has been
reached and the termination condition is satisfied.

If the initial value of the variable is greater than the terminal value,
the loop is still executed once. The loop set up by the statement:

1§ FOR I = 2¢ TO 2 STEP 2

will be executed only once although a statement like the following will
initialize execution of a loop properly:

1§ FOR I=2¢ TO 2 STEP -2

For positive STEP values the loop is executed until the control variable
is greater than its final value. For negative STEP values, the loop
continues until the control variable is less than its final value.

FOR loops can be nested but not overlapped. The depth of nesting depends
upon the amount of user storage space available (in other words, upon the
size of the user program and the amount of RAM available). Nesting is a
programming technique in which one or more loops are completely within
another loop. The field of one loop (the numbered lines from the FOR
statement to the corresponding NEXT statement, inclusive) must not cross
the field of another loop.

37

ACCEPTABLE NESTING UNACCEPTABLE NESTING
TECHNIQUES TECHNIQUES

Two Level Nesting

FOR I1 = 1 TO 10 FOR I1 = 1 TO 10
[FOR I2 = 1 TO 10 FOR I2 = 1 TO 10
NEXT I2 NEXT T1
FOR I3 = 1 TO 10 NEXT I2
NEXT I3
NEXT Il
Three Level Nesting
FOR Il 1 TO 10 FOR Il 1 TO 10
FOR I2 1 TO 10 FOR I2 1 TO 10
[FOR I3 =1 TO 10 FOR I3 =1 TO 10
NEXT I3 NEXT I3
[FOR I4 =1 TO 10 [FOR I4 = 1 TO 10
NEXT I4 NEXT I4
NEXT I2 NEXT Il
NEXT Il - NEXT I2

An example of nested FOR-NEXT loops is shown below:

5 DIM X(5,1f0)

19 FOR A=1 TO 5

20 FOR B=2 TO 1¢ STEP 2
3¢ LET X(A,B)= A+B

49 NEXT B

5¢ NEXT A

55 PRINT X (5,1%)

When the above statements are executed, BASIC 8001 prints 15 when line
55 is processed.

It is possible to exit from a FOR-NEXT loop without the control variable
reaching the termination value. A conditional or unconditional transfer
can be used to leave a loop. Control can only transfer into a loop which
had been left earlier without being completed, ensuring that termination
and STEP values are assigned.

Both FOR and NEXT statements can appear anywhere in a multiple statement
line. For example:

1¢ FOR I=1 TO 1@ STEP 5:NEXT I: PRINT "I=";I
causes:
1=11

to be printed when executed.

38

XIV. GOSUB AND RETURN STATEMENTS

A subroutine is a section of code performing some operation required
at more than one point in the program. Sometimes a complicated I/O
operation for a volume of data, a mathematical evaluation which is too
complex for a user-defined function, or any number of other processes
may be best performed in a subroutine.

More than one subroutine can be used in a single program, in which
case they can be placed one after another at the end of the program
(in line number sequence). A useful practice is to assign distinc-
tive line numbers to subroutines; for example, if the main program
uses line numbers up to 199, use 200 and 300 as the first numbers of
two subroutines.

Subroutines are usually placed physically at the end of a program
before DATA statements, if any- The program begins execution and
continues until it encounters a GOSUB statement of the form:

1) GOSUB line number

where the line number following the word GOSUB is that of the first
line of the subroutine. Control then transfers to that line of the
subroutine. For example:

5¢ GOSUB 2@¢

Control is transferred to line 200 in the user program. The first
line in the subroutine can be a remark or any executable statement.

Having reached the line containing a GOSUB statement, control trans-
fers to the line indicated after GOSUB; the subroutine is processed
until BASIC 8001 encounters a RETURN statement of the form:

2) RETURN

which causes control to return to the statement following the original
GOSUB statement. A subroutine must always be exited via a RETURN
statement.

Before transferring to the subroutine, BASIC 8001 internally records the
next sequential statement to be processed after the GOSUB statement;

the RETURN statement is a signal to transfer control to this statement.

In this way, no matter how many subroutines there are or how many times

they are called, BASIC 8001 always knows where to transfer control next.
The following program demonstrates the use of GOSUB and RETURN.

1 REM - THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
19 DEF FNA (X)= ABS (INT (X))
29 INPUT A,B,C

39 GOSUB 1¢@
49 LET A=FNA(A)

39

5@ LET B=FNA (B)

6y LET C=FNA(C)

70 PRINT

8¢ GOSUB 1¢g

9y STOP

1% REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
11§ REM - OF THE EQUATION: AXA2 + BX + C = ¢

12 PRINT "THE EQUATION IS "A "*XA2 + " B"*X + "C
13g LET D=B*B - 4*A*C

149 IF DK>0 THEN 179

15 PRINT "ONLY ONE SOLUTION... X "; -B/(2*A)

16 RETURN

17¢ IF D@ THEN 20¢

189 PRINT "TWO SOLUTIONS...X =";

185 PRINT (-B+SQR(D))/(2*A); ") AND ("; (-B-SQR(D))/(2*A)
199 RETURN

2@ PRINT "IMAGINARY SOLUTIONS X=(";

2@5 PRINT -B/(2*A) "," SQR(-D)/(2*A) ") AND (";
207 PRINT -B/(2*Aa) ","; -SQR(-D)/(2*an) ")"

219 RETURN

°10]0] END

Subroutines can be nested; that is, one subroutine can call another
subroutine. If the execution of a subroutine encounters a RETURN
statement, it returns control to the line following the GOSUB which
called that subroutine. Therefore, a subroutine can call another
subroutine, even itself. Subroutines can be entered at any point

and can have more than one RETURN statement. It is possible to trans-
fer to the beginning or any part of a subroutine; multiple entry points
and RETURN's make a subroutine more versatile. Up to 20 levels of
GOSUB nesting are allowed.

XV. END STATEMENT

The END statement is the last statement in a BASIC program and is of
the form:

END

The line number of the END statement must be the largest line number
in a given program, since any lines having line numbers greater than
that of the END statement are not executed (although they are saved
with the SAVE command) .

The END statement is optional. When an END statement is executed,
program execution stops and the READY message is printed.

XVI. STOP STATEMENT
The STOP statement can occur several times throughout a single program
with conditional jumps determining the actual end of the program. The

STOP statement is of the form:

90 STOP

40

and causes:

BREAK IN 90
READY

to be printed when executed.

This signals that the execution of a program has been terminated and
BASIC 8001 is able to accept further input.

41

BASIC 8001 FUNCTIONS

ARITHMETIC FUNCTIONS

BASIC 8001 provides functions to perform certain standard mathematical
operations such as square roots, logarithms, etc.

These functions have three or four letter call names followed by
a parenthesized argument. They are pre-defined and may be used
anywhere in a program.

Call Name Function
ABS (x) Returns the absolute value of x.
ATN (x) Returns the arctangent of x as an

angle in radians in range + or -pi/2.

CALL(x) CALL the user, machine 2
at location @A Hex. ! —245 7
Pnpoo ADQI = Lo -~24575
Agee=H1 =-24574
COS (x) Returns the cosine of x radians.
EXP(x) Returns the value of e¥ where e=2.71828.
FRE (X) Returns number of free BYTES not in use.
INT(x) Returns the greatest integer less than

or equal to x, (INT(-.5)=-1).

INP (x) Returns a BYTE from input port 0<x<255.

LOG (x) Returns the natural logarithm of x.

PEEK (x) Returns a BYTE from memory address 0<x<32767
or if x is negative the memory address is
65536+x.

POS (x) Returns a value of current cursor positions

between 0 and 79.

x) Nt oo GooD.... FLRLATS &e(Returns a random number between O and 1.

cn\\/ (995 numbers.

RND(

SGN (x) Returns a value indicating the sign of x.
SIN(x) Returns the sine of x radians.

SPC (x) Causes x spaces to be generated.

SOR (x) Returns the square root of x.

TAB (x) Causes the 8001 to space over to

number x. Valid in PRINT statement only.

TAN (x) Returns the tangent of x radians.
42

The argument x to the functions can be a constant, a variable, an
expression, or another function. A square bracket cannot be used as
the enclosing character for the argument x, e.g. SIN [Xj is illegal.

Function calls, consisting of the function name followed by a paren-
thesized argument, can be used as expressions or as elements of
expressions anywhere that expressions are legal.

Values produced by the functions SIN(x), COS(x), ATN(x), SQR(x), EXP(
and LOG(x) have six significant digits.

I. Sine and Cosine Functions, SIN(x) and COS(x)

The sine and cosine functions require an argument angle expressed in
radian measure. If the angle is stated in degrees, conversion to
radians may be done using the identity:

¢radians) = {degrees) * (pi/180)

In the following example program, 3.14159 is used as a nominal value
for pi. P is set equal to this value at line 20. At line 40 the
above relationship is used (in the expression within the LET statemer
to convert the input value into radians.

1¢ REM - CONVERT ANGLE (X) TO RADIANS, AND

11 REM - FIND SIN AND COS

2¢ LET P = 3.14159

25 PRINT "DEGREES", "RADIANS", "SINE", "COSINE"

3¢ INPUT X
49 LET Y = X*P/180
60 PRINT X, Y, SIN(Y), COS(Y)

7¢ GOTO 30
RUN
DEGREES RADIANS SINE COSINE
20

2 2 2 1

?21@-

19 .174533 .173648 .984808
220

20 . 349066 .342¢2 .939693
?39

30 .523598 .5 .866926
2360

369 6.28318 -5.24310E-96 1

245

45 .785398 .79719%6 .797197
290

ag 1.57¢8 1 1.12352E-06
?RETURN

READY

43

II. Arctangent Function, ATN(x); Tangent Function, TAN(x)

The arctangent function returns a value in radian measure, in the range
+pi/2 to -pi/2 corresponding to the value of a tangent supplied as the
argument (X).

In the following program, input is an angle in degrees. Degrees are
then converted to radians at line 40.

At line 70 the tangent value, Z, is supplied as argument to the ATN
function to derive the value found in column 4 of the printout under
the label ATN(X). Also in line 70 the radian value of the arctangent
function is converted back to degrees and printed in the fifth column
of the printout as a check against the input wvalue shown in the first
column.

1§ LET P= 3.14159
2@ PRINT "SUPPLY AN ANGLE IN DEGREES"

25 PRINT "ANGLE", "ANGLE", "TAN(X)", "ATAN(X)", "ATAN(X)"
26 PRINT " (DEGS)"," (RADS)",,," (DEGS)"
3¢ INPUT X
4 LET Y = X*P/18¢
5¢ LET Z = TAN(Y)
7% PRINT X,Y,2,ATN(Z),ATN(Z)*180/P
85 PRINT
9¢ GOTO 3¢
RUN
SUPPLY AN ANGLE IN DEGREES
ANGLE ANGLE TAN (X) ATAN (X) ATAN (X)
(DEGS) (RADS) (DEGS)
27
) 1%} g 2 1%}
245
45 .785398 .999999 .785398 45
?1g
10 .174533 .176327 .174533 10
? (RETURN)
READY
IIT. Square Root Function, SQR(X)

This function derives the square root of any positive value as shown
below.

1g INPUT X
20 LET X = SOR(X)
3¢ PRINT X
49 GOTO 1@
RUN
216
4
2190
1g
21990

44

31.6228
2123456789
11111.1
2?17
4.12311
?25E2

5¢
21979

44 .3847
? (RETURN)
READY

Iv. Exponential Function, EXP (X)

The exponential function raises the number e to the power x. EXP is
the inverse of the LOG function. The relationship is

LOG(EXP (X)) = X

The following program prints the exponential equivalent of an input
value. Note that the output values derived below are used as input to
the LOG function.

1¢ INPUT X
2@ PRINT EXP(X)
49 GOTO 19

RUN
?4
54.5981
?1¢
22¥26.5
?29.421096
12345
?24.60517
199
?25
7.20P349E+10
? (RETURN)
READY

V. Logarithm Function, LOG(x)

The LOG function derives the logarithm to the base e of a given value.
In the following program at line 20, the LOG function is used to
convert an input value to its logarithmic equivalent.

1¢ INPUT X
2@ PRINT LOG (X)
3¢ GOTO 19

RUN

254.59815

4

222026.47

10 45

212345
9.42101

2199
4.60517

?2.720349
25

E1ll

? (RETURN)

READY

Logarithms to the base e may easily be converted to any other base

using the fol

where a represents the desired base.

conversion to

lowing formula:

the base 10.

The following program illustrates

1 REM - CONVERT BASE E LOG TO BASE 1@ LOG.

5 PRINT
15 INPUT
17 PRINT
2@ PRINT
49 PRINT
50 GOTO 1
6@ END
RUN
VALUE
24

4
2250

250
2?5

5
260

6g
2190

199
? (RETURN)
READY

"VALUE","BASE E LOG","BASE

X

X,

LOG(X),

LOG (X) /LOG (19)

5
BASE E LOG
1.38629
5.52146
1.60944
4.09434

4.60517

14 LoGg"

BASE 1¢ LOG
.69206
2.39794
.69897

1.77815

An attempt to do a LOG(0) or LOG of a negative number causes the

CF error mess

VI. Absol

age.

ute Function, ABS(x)

The ABS function returns an absolute value for any argument value.

Absolute value is always positive.

In the following program, various

input values are converted to their absolute values and printed.

46

1¢ INPUT X

2¢ LET X = ABS(X)

3¢ PRINT X

49 GOTO 19

/RUN

2-35.7
35.7

2
2

?25E10
2.50@@PE+11
2195555567
1.95556E+@8
210.12345
10.1234
?-44.555566668899
44.5556

? (RETURN)

READY

VII. Integer Function, INT (x)

The integer function returns the value of the greatest integer not
greater than x. For example:

PRINT INT(34.67)
34

PRINT INT(-5.1)
-6

The INT of a negative number is a negative number with the same or
larger absolute value, i.e., the same or smaller algebraic value.
For example:

PRINT INT (-23.45)
=24

PRINT INT(-14.39)
-15

PRINT INT(-11)
-11

The INT function can be used to round numbers to the nearest integer,
using INT(X+.5). For example:

PRINT INT (34.67+.5)
35

PRINT INT(-5.1+.5)
-5

47

INT(x) can also be used to round to any given decimal place or
integral power of 10, by using the following expression as an
argument:

(x*10%D+.5) /10 D
where D is an integer supplied by the user.

1§ REM - INT FUNCTION EXAMPLE

15 PRINT

2@ PRINT "NUMBER TO BE ROUNDED:"
25 INPUT A

4@ PRINT "NO. OF DECIMAL PLACES:"
45 INPUT D

60 LET B = INT(A*10AD + .5)/1@AD
7@ PRINT "A ROUNDED = " B

87 GOTO 15

9¢ END

RUN

NUMBER TO BE ROUNDED:

?55.65842
NO. OF DECIMAL PLACES:
?2

A ROUNDED = 55.66

NUMBER TO BE ROUNDED:
278.375

NO. OF DECIMAL PLACES:
?2-2

A ROUNDED = 1¢¢@

NUMBER TO BE ROUNDED:
267.38

NO. OF DECIMAL PLACES:
2-1

A ROUNDED = 79

NUMBER TO BE ROUNDED:
? (RETURN)
READY

VIII. Random Number Function, RND (X)

The random number function produces a random number, or random number
set, between 0 and 1. The numbers are reproducible in the same order
after ESC, E key if X»0 for later checking of a program. The argument (x)
is not used and can be any number (it cannot be a string expression); it
serves only to standardize all BASIC 8001 function representations. The
form RND is not legal. For example:

48

1¢ REM - RANDOM NUMBER EXAMPLE.

25 PRINT "RANDOM NUMBERS:

39 FOR I = 1 TO 15

4¢ PRINT RND (1)3

50 NEXT I

6% END

RUN

RANDOM NUMBERS :
.10@250.50438 .964813.0267824 .886627.388@94 .636444.569123
.3P6121.209046 .285553.599886 .958221.744@955 .179351.46@434
.985412.27376 .522186.701146 .246246.599584 .77780%1.457448

READY
To obtain random digits from O to 9, change line 40 to read:
4@ PRINT INT(1O*RND(1)),

and run the program again. This time the results will be printed
as follows:

RUN
RANDOM NUMBERS:
8 9 8 9 5 5 5 9
5 4 4 1 5
READY
It is possible to generate random numbers over a given range. If

the open range (A,B) is desired, use the expression:
(B-A) *RND (1) +A
to produce a random number in the range A<n<B.

The following program produces a random number set in the open range
4,6 (the extremes, 4 and 6, are never reached).

14 REM - RANDOM NUMBER SET IN OPEN RANGE 4,6.
20 FOR B = 1 TO 15

3¢ LET A = (6-4) * RND(1) +4

4@ PRINT A,

5@ NEXT B

67 END

RUN

.839019.720321
.452117.433291
.45@592 . 3@797

4.20054.59266 5.929624.2@985 5.773255.54026 5.272884.76248 5.678@45.25946
4.612245.33@46 4.571104.26695 5.916445.69965 4.3587¢5.54721 4.904235.65@21
4.197¢085.09@34 5.044374.82533 4.492495.61408 5.555604.41632 4.9¢1185.01508

READY

49

NOTE:

number sequence.

number.

IX. Sign Function, SGN(x)

Negative arguments, i.e., RND(-x) will start a new random
While RND (@) will always generate the last random

the same seiuencﬁfr

The sign function returns the value 1 if x is a positive value, ¢

if x is 0 and -1 if x is negative.

PRINT SGN(3.42)
1

PRINT SGN(-42)
-1

PRINT SGN(23-23)
g

For example:

The following example program illustrates the use of the SGN function.

REM-SGN FUNCTION EXAMPLE.
READ A,B,C

1g
20
25

PRINT IIA = "A,"B - IIB’IIC — IIC

3@ PRINT "SGN(A) ="SGN(A), "SGN(B) ="SGN(B),
4@ PRINT "SGN(C) ="SGN(C)
5¢ DATA -7.32, .44, ¢
6 END
RUN
A=-7.32 B= .44 Cc=4¢
SGN(A) =-1 SGN(B) =1 SGN(C) =@
READY
X. Call Statement

The CALL statement can be inserted anywhere in the BASIC 8001 program

and has the form:
CALL (expression)

Where expression

is the argument to the assembly
language routine. The argument
may be an expression. This may
include values passed to the user
routine.

The CALL statement causes a jump to location AOOO HEX, which, unless

modified by the user, contains a jump to the CF ERROR routine.

The

user must modify these three locations to go to his routines.

50

BASIC 8001 FUNCTIONS

USER DEFINED FUNCTIONS

In some programs it may be necessary to execute the same sequence of
statements or mathematical formulas in several different places.
BASIC 8001 allows definition of unique operations or expressions and
the calling of these functions in the same way as the square root or
trig functions.

These user-defined functions consist of a function name: the first
two letters of which are FN followed by a third or a fourth letter.
For example:

legal illegal
FNA FNAS
FNAA FN2
FNAl

Each function is defined once and the definition may appear anywhere
in the program. The defining or DEF statement is formed as follows:

DEF FNa (argument) = expression (argument)
where a is a variable name. The argument may consist of a dummy variable
and the number of arguments is limited to one variable. The expression

may contain other program variables not among the argument variable.
For example:

10 DEF FNA(S) = SA2
causes a later statement:
2@ LET R = FNA(4)+1
to be evaluated as R=17. As another example:

50 DEF FNB(A) = A+XA2
67 Y=FNB(14)

causes the function to be evaluated with the current value of the
variable X within the program.

The two following programs
Program #1:
17 DEF FNS(A) = AAA
20 FOR I=1 TO 5
3¢ PRINT I, FNS(I)

40 NEXT I
5@ END

51

Program #2:

1¢ DEF FNS(X) = XAX
2¢ FOR I=1 TO 5

3¢ PRINT I, FNS(I)
4@ NEXT I

5@ END

cause the same output:

RUN
1 1
2 4
3 27
4 256
5 3125
READY

The argument in the DEF statement can be seen to have no significance;

it is strictly a dummy variable. (A DEF statement with no arguments is
illegal.) The function itself can be defined in the DEF statement in
terms of numbers, variables, other functions, or mathematical expressions.
For example:

17 DEF FNA(X) = XA2+3*X+4
2@ DEF FNB(X) FNA (X) /2 + FNA(X)
3@ DEF FNC (X) SOR(X+4)+1

The statement in which the user-defined function appears can have that
function combined with numbers, variables, other functions, or mathe-
matical expressions. For example:

4 LET R = FNA(X+Y+Z)*N/(YA2+D)

A user-defined function cannot have several arguments, as shown below:
25 DEF FNL(X,Y,Z) = SQR(XAZ + YA2 + ZA2)

will cause an error

SN ERROR IN 25.
READY

When calling a user-defined function, the parenthesized arguments can be
any legal expressions. The value of each expression is substituted for
the corresponding function variable. For example:

1¢ DEF FNZ (X)=XA2

2¢ LET A=2

3@ PRINT FNZ(2+A)

line 30 causes 16 to be printed.

52

If the same function name is defined more than once, then the last
definition will be used. The program below

1¢ DEF FNX(X)=XA2
2@ DEF FNX(X)=X+X
3¢ LET A=5

4@ PRINT FNX(A)

will cause 10 to be printed.

The function variable need not appear in the function expression as
shown below:

10 DEF FNA (X) = 4 +2
20 LET R = FNA(10)+1
30 PRINT R

40 END

RUN

7

53

BASIC 8001 FUNCTIONS

STRING FUNCTIONS

Like the intrinsic mathematical functions (e.g., SIN, LOG), BASIC 8001
contains various functions for use with character strings. These
functions allow the program to concatenate two strings, access part of
a string, determine the number of characters in a string, generate a
character string corresponding to a given number or vice versa, search
for a substring within a larger string, and perform other useful
operations. The various functions available are summarized in the
following table.

String Functions

Function code Meaning

ASC (x$) Returns the seven-bit internal code for the
one-character string (x$) as a decimal num-
ber. If the argument contains more than
one character, then the first character in
the string is returned.

CHRS (x) Generates a one-character string having the
ASCII value of x where x is a number greater
than or equal to O and less than or equal to
255. For example: CHRS$(65) is equivalent

to "A". Only one character can be generated.

FRE (x$) Returns number of free string BY

LEFTS (x$,1) Returns left most I characters of string
(x$) .

LEN(x$) Returns the number of characters in the
string x$ (including trailing blanks). For
example:

PRINT LEN(AS)
26
MIDS (x$,I,J) Returns the string of characters in position

I through J in xS.

RIGHTS (x$,1) Returns right most I characters of string
(x$) .
STRS (x) Returns the string which represents the

numeric value of x as it would be printed by
a PRINT statement but without a leading or
trailing blank.

54

VAL (x$) Returns the number represented by the string
x$. If x$ does not represent a number, then

@ value is returned.

In the above examples, x$ and y$ represent any legal string expressions,
and I and J represent any legal arithmetic expressions.

User-Defined String Functions

Character string functions cannot be written in the same way as numeric

functions.

55

BASIC 8001 EDITING COMMANDS

BASIC 8001 provides several key commands which can be used to halt
program execution, erase characters or delete lines. The below table
provides an explanation of each of the key commands.

Key Commands

Key

Explanation

CTRL/J
or LINEFEED

or\l/

CTRL/M or RETURN

CTRL/K
+OrY
ERASE LINE

CTRL/Z
or CURSOR LEFT
or ¢&—

"

CTRL/L
or ERASE PAGE

Interrupts execution of a command or program.
BASIC 8001 prints the message

BREAK IN XXX
READY

A control command is typed by holding down
the CTRL key while typing the letter key.

Must be typed to end every line typed in
or to indicate the end of an INPUT.

Deletes the entire current line (provided
the RETURN key has not been typed).
BASIC 8001 displays:

Erased line and CR.

Deletes the last character typed and echoes
as a cursor left on the terminal. Snraces
as well as characters or control cc es may
be erased.

A colon is used to separate multiple
statements per line.

Erases CRT screen but does not change
any BASIC 8001 statements.

If the RETURN key has already been typed, a program line can be corrected
by typing the appropriate line number and retyping the line correctly.

The line can be deleted by typing the RETURN key immediately after the
line number; removing both the line number and line from the program.

If the line number of a line not needing correction is accidentally typed,

the cursor left key (CTRL Z) may be used to delete the number(s); then the
correct number can be typed. Assume the line:

56

19 IF A>5 GO TO 23¢9

is correct. A line 15 is to be inserted, but:
1¢ LET

is typed by mistake. The correction is made as follows:
1§ LET4&& &5 LET X=X-3

Line 10 remains unchanged, and line 15 is entered.

Following an attempt to run a program, error messages may be output
on the terminal indicating illegal characters or formats, or other
user errors in the program. Most errors can be corrected by typing
the line number (s) and the correction(s) and then rerunning the pro-
gram. As many changes or corrections as desired may be made before
runs.

The following editing commands are entered in immediate mode and
terminated by the RETURN key. These commands are used to erase a
program in RAM, and list, punch or run a program.

I. NEW COMMAND

The NEW command clears current contents of the storage area set up
by BASIC 8001. This deletes any commands, programs, arrays, strings
or symbols currently stored by BASIC 8001.

NEW should be used before entering a new program from the terminal
keyboard to be sure no old program lines will be mixed into the new
program and to clear out the symbol table area.

Example:

NEW
READY
1¢ READ A

clears the storage area and inserts the program being input at the
keyboard.

S LIST COMMAND

The LIST command prints the user program currently in core on the
terminal.

A part of a program may be listed by typing LIST followed by a line
number. This causes that line and all following lines in the program
to be listed.

57

Type CTRL/J or linefeed key to halt the listing. BASIC 8001 returns
to the READY message when the current line is finished.

The lines listed may differ slightly from those entered because:

1. Certain characters while acceptable to BASIC 8001 are stored
in a standard manner.

Character Character
Stored
= ¢ <=
=? =
>L <2

2. Literals are stored to 24 bits of accuracy. Those with more
than 24 bits are truncated to 24 bits.

3. Although literal storage is 24 bits, output is truncated to
6 decimal digits.

4. Literals are output in standard BASIC 8001 format, regardless of
how they were input; for example,

1¢ LET X=3.0+1.80000@1
20 PRINT X-E7

LIST

1¢ LET X=3+1

2¢) PRINT X-1.@@0@gE+@7

5. Spaces in the input program are ignored, except within
strings and REM statements. The LIST command prints the
program with a space inserted to separate the key word and
the line number. The listed program is therefore easier
to read.

Example:
LIST 199
Lists line 100 and all remaining lines in the program.

IIT. .SAVE COMMAND

The SAVE command outputs the program in RAM to the specified device.
The form of the command is:

SAVE A
The format of the program output by the SAVE command is exactly the

same as that stored in RAM memory. It may be recalled by the same
file name using the LOAD command.

58

Iv. RUN COMMAND

After the user program is entered into RAM, it can be executed by
typing the command

RUN
and the RETURN key.

The program is scanned; arrays are created in core and then the program
is executed. Any appropriate error messages are printed and when the
END or STOP statement is encountered, execution halts and a message is
printed.

After execution, the variables used in a program remain accessible for
use in immediate mode until a NEW, CLEAR or another RUN command is
executed.

V. CLEAR COMMAND
The CLEAR command clears the contents of the user array and string
buffers. This command is generally used when a program has been exe-
cuted and then edited. Before it is rerun, the array and string buffers
are set to zeros and nulls by the CLEAR command to provide more core.
These buffers will be filled again when the RUN command is executed.
Example:

19 A=1¢

2¢ PRINT A

CLEAR

READY

RUN
19

READY

VI. CLEAR X COMMAND
The CLEAR X performs the same function as CLEAR without the argument,
but the Argument X reserves X locations for string variables which are
required in string calculations. Normally this is 50 locations unless
changed by CLEAR X command.

VII. CONTINUE COMMAND
Continues program execution after a Control J or line feed is typed or

a STOP statement is executed. You cannot continue after any error, after
modifying your program or before your program has been run.

59

One of the main purposes of CONT is debugging. Suppose at some point
after running your program, nothing is printed. This may be because
your program is performing some time-consuming calculation, but it may
be because you have fallen into an "infinite loop". An infinite loop

is a series of BASIC 8001 statements from which there is no escape.

The BASIC 8001 will keep executing a series of statements over and

over until you intervene or until power to the unit is cut off. If

you suspect your program is in an infinite loop, type in a Control J

or line feed. The line number of the statement BASIC 8001 was executing
will be typed out.

After BASIC 8001 has typed out READY, you can use PRINT to type out
some of the values of your variables. After examining these values,
you may become satisfied that your program is functioning correctly.
You should then type in CONT to continue executing your program where
it left off, or type a direct GOTO statement to resume execution of
the program at a different line.

You could also use assignment (LET) statements to set some of your
variables to different values. Remember, if you line feed or Control
J your program and expect to continue it later, you must not get any
errors or type in any program lines. If you do, you won't be able to
continue, and get a "CN" (continue not) error. It is impossible to
continue a direct command. CONT always resumes execution at the next
statement to be executed in your program when Control J or line feed
was typed.

VIIT. LOAD I COMMAND

LOADS the program named I from the 8001 CPU operating system Reader
Input port specified by the I/O BYTE at location 9F90 HEX, see the
CPU 0.S. Manual. A new command is automatically done before the
LOAD I command is executed. When finished loading the READY command
will appear as usual. If the unit can't find the file on the floppy
tape, then an error message should appear.

IX. LOAD?I COMMAND

Does same as LOAD I except that a NEW command is not performed and
BASIC 8001 does a word-by-word comparison of file I with the program
already existing in RAM memory. If they are the same, then READY

appears, else

VERIFY FAILURE
READY

will appear.
This should always be used after saving a program with the SAVE I

command to ensure that it was saved correctly and can be reloaded
without error.

60

USING ASSEMBLY LANGUAGE

ROUTINES WITH BASIC

BASIC 8001 has a facility which allows experienced 8080 assembly
language programmers to interface their own assembly language
routines to BASIC 8001. This facility permits the user to add
functions to BASIC 8001 which can operate directly on special
purpose peripheral devices. This section describes in some detail
the internal characteristics of BASIC 8001 during the execution of
a BASIC 8001 program, and is intended to serve as a programming
guide for the creation of such user-coded assembly language functions.
This material assumes the user is familiar with 8080 assembly
language. For additional information on this subject, refer to an
assembly language programming manual on the 8080 CPU.

The CALL statement is used to reference these assembly language
routines from the BASIC 8001 program.

Te call /7"5‘3&:1’\‘0‘7 progTam from BAsIC

('.n(j 'PC(SG ac Uenen 3.

(Mu”‘uf’l)l X iD? a, b)’ Si‘u:‘"*n-’f) fo “the ’e‘“) [Nn 5'7-':\‘:(\ (‘“\\hm\’ﬁjej b/ 1e&ﬂ

;(,9 TN~ T X
[-',(g QR,LNHILL:(,g NorE . CAEUNEG AT LocATreN 25 el
Gy GOTO P ' T gut oF X into The B ceyuster,
5 Pore - 2‘45754 i76

ASSEMBLY LANGUAGE
CALL 25/? *Get X 1a DE
Mov Ay E
Rke
Moy B,A
xR A

-24575 ¢ Poxe -24574,176

i@

20 INPuYT X

3¢ FORIz |70 i06@: A=CALL (X)), PRINT X; A
H =170 0000 02 2%(X): NexT PRINTX; A
5@ C 0 2@

99 €

3 CoQ
Beo 3

BOOH

B@eS

¢eo
BGGS

CAiil '3?')'/‘)2..;45,(Q CD 2 2.§

MoN B, E Y3

XRA, A -

TMp £
C3 53

The Compucolor

PART

PART

TABLE OF CONTENTS

1

Specifications and RS232C Interface
Start-Up and Initialization
Summary of Control Codes

Summary of Escape Codes

Summary of Graphic Plot Submodes
CRT Refresh Memory

11

Keyboard

Detail of Control Codes

Details of Escape Codes

Details of Graphic Plot Submodes

Light Pen Operation

APPENDIX A

Keyboard Layout
Intecolor®8001 Code Set
Input Flow Diagrams
Input Command Delays

CCI Code Assignments

J1l and J2 Pin Assignment
I/0 Connector Layout

APPENDIX B

Plot Mode Functions

Plot Mode Characters and Codes

X Point Plot and Y Point Plot

XY Incremental Point Plot Movements
X and Y Bar Graph Modes

X Incremental Bar Graph, Y Incremental Bar Graph

XOYOVector Plot Mode

APPENDIX C

TMS 5501

APPENDIX D

TMS 8080

APPENDIX E

®
How to Align the Intecolor 8001.

PAGE

10

11

12-18

19

25-36

37

T ST e e

S B R T e T bl

@ 1975

PROPRIETARY STATEMENT

This document, submitted in confidence,
contains proprietary information which
shall not be reproduced or transferred

to other documents or disclosed to others
or used for manufacturing or any other
purpose without prior written permission
of Intelligent Systems Corp.

L}

PART I

SPECIFICATIONS

Introduction

The Intecolor@ 8001 is an eight color intelligent CRT data terminal
designed as a replacement for teletypes and black and white CRT data terminals.
It is a self-contained, desk top unit which offers, with the use of a modem,
two-way data communications over common voice telephone lines or teletype
compatible current loops. It can also be used in the stand alone mode as a
complete desk top computer if equipped with the proper options.

Basic System Specification

Power: 105-125 volts, 60HZ, 250 watts
Option 11: 205-250 volts, 50-60 HZ

Temperature: +10°C to +40°C operating
-30°C to +70°C storage

Humidity: 0 to 95% non-condensing
Package Size 17 1/2" high

Desk Mount 19 3/8" wide

Version: 22 1/2" long

Keyboard 3 1/4" high

Dimensions: 14 1/16™ wide x 5 1/2" deep
Weight: 85 pounds

Screen 19" diagonal measure

Size: 186 sg. inch screen area

4x3 aspect ratio

Display 120 sqg. inches

Area: (12.0™ wide x 10.0" high)

Character 80 characters per line, 25 lines per page
Format: Option 16: 80 characters per line,

48 lines per page

Character 64 ASCII Characters, 5x7 dot matrix

Style: within a 6x8 dot pattern
Option 03: 32 Graphic Characters, 6x8 dot matrix
Option 17: 64 Graphic Characters, 6x8 dot matrix

Standard Interface

Standard I/O Ports

The standard Intecolor 8001 has two input ports.

One port, J1, is an asynchronous serial RS 232C I/O, or if Option
07 is installed, a serial 20 ma current loop I/O. The other port, J2,
accepts parallel input data from the keyboard and provides an 8 bit parallel
output. The Intecolor® 8001 is furnished with a crystal clock and provides
a keyboard selectable baud rate of normal 110, 150, 300, 1200, 2400, 4800,
and 9600 baud, or a high speed option of 880, 1200, 2400, 9600, 19,200,
38,400, and 76,800 baud.

The serial input port is furnished without parity checking so
that when in the Plot Mode, or CCI Mode, eight data bits can be received.

The signals for the standard RS 232C I/O ports are shown on
page 3 and on J1 and J2 in Appendix A7.

Pin 2 of the Keyboard J2 connector signals the Data communications
equipment that the terminal has received a byte and is processing the last
byte received. The Unit's input port has a one byte buffer. So for maximum
speed, the communications equipment can send the next byte as soon as it
has detected the high to low transition on pin 2. The wave form is shown
below:

3.5V Approx. 70 MICRO SECONDS

Next byte may be sent after high
to low transition.

Apeay 30N=A-=440

Apeay=A+=NO

JTWSuUeI} O3 Apeal ST TRPUTIWIST
elep 9U3l 3BU} 4HDA dY3 STeubts

OSTe T UTd O3 Pa302UuU0d

0SI Aq psatnbsx joN

UO ST TRUTWIS] JT A+ SABMIY
UOTSSTWSURIL] I0J 4dD0d 93 SUOTITPUOD

A+ ”momgm = 4 O._
A= =XIBW = ,Tu
N+ "mommm = uwOu
A= =TBNW = ;Tu

OosTe [Uuld
pue punois STSSeYD O3 3OBUUOD

S3usWWo)

HOVIHIINI DCECSYH

jusudtnbg uotjeoTUNWWO) ®IEQ - HDAy

x»dDd O3 DSI woxdg an
N g7
OSI O3 xHDQ woxd g0
¥d0d O3 DSI woxAg 0
OSI O3 4xdDd woxdg gad
x»dDQ O3 DSI woxdg vd
N ArAv4
UOT309ITQ 2IN3eTOUSWON

Apeoy TeUTWISL B3IERJ

punoxs Teubts

puss o3 Iea1d

puss o3 3sonbey

B3Rq pPOATSD9Y

B3lERQ pPo33TWSURIL

punois aAT30930ad

QuTT TRUDTS

oc

UTd

START-UP AND INITIALIZATION
Introduction

BEFORE ATTEMTPING TO OPERATE YOUR INTECOLOR&§8001, IT IS
SUGGESTED THAT THIS SECTION BE READ AND UNDERSTOOD. The power switch
(SW1l) is located in the lower rear panel portion of the CRT case. Also
located on this panel are the various input and output port connections.
These are shown in Appendix A8. Connection diagrams are shown in Appendix
A7.

Power

Plug the line cord into a 120VAC-60HZ outlet (230VAC-50-60 HZ
with Option 11). When the power switch is pushed up the terminal is
in the operating state. After the switch is turned on, a 60 second warm
up periQd is required before operating the terminal. The unit will come

up in the initialized state, So-

Initialized State - SO

The unit will always come up in the initialized state-S, when
power is turned on after being off for at deast 30 seconds.

In State SO the following conditions are true:

A. Visible foreground color = white

B. Visible background color = black

(e Reverse field flag = "O"

D. Visible A7 bit = "O" otherwise noted)

E. Plot Bit = "O"

F. Page Mode Operation (unless otherwise noted)

G. Terminal Mode = Local (unless otherwise noted)

H. Baud Rate = 9600 with one stop bit (unless otherwise noted)
I. Write left to right with visible cursor

J. Blind foreground color = red

K. Blind background color = black

L. Blind A7 Bit = "O"

M. Blind Plot Bit = "O"

N. Blind Cursor at home or top left corner of screen.

After the above conditions have been set, the cursor is moved
to the home position which is the top left hand corner of the screen, and
the position of the first character of the first line. The screen will
clear by an Erase Page command which effectively makes all 2000 (3840 with
80 character x 48 line option) characters; spaces (20 HEX) which are white, non-
blinking (®#7 HEX). The unit is now ready to accept commands from the keyboard
or the serial input if connected.

Convergence and Purity

The units convergence and purity may need adjusting when initially
received. Allow at least a 30 minute warm before setting the final convergence.
See Appendix C for convergence alignment.

4

SUMMARY OF CONTROL CODES
FOR INTECOLOR 8001

NULL (control @) has no effect.
PROTECT (control A) has no effect.
PLOT (control B) enters graphic plot mode (see plot submodes).

CURSOR XY (control C) enters X-Y cursor address mode for either
visible cursor or blind cursor.

FREE (control D) not used - has no effect.
FREE (control E) not used - has no effect.

CCI (control F) the next character which follows provides the 8 bit
visible status word.

BELL (control G) provides a 150 ms tone. [Cw\'\'\mw\l-s *"‘q

HOME (control H) moves the cursor to top left corner of display.

TAB (control I) causes cursor to advance to next column - the tab

10

11

12

13

14

15

16

17

18

19

20

21

columns are every 8 characters.
LINE FEED (control J) causes the cursor to move down one line.

ERASE LINE (control K) causes the cursor to return to beginning of line
and causes the complete line to be erased.

ERASE PAGE (control L) causes the complete screen to be erased and
the cursor moves to the home position.

RETURN (control M) causes the cursor to move to the beginning of the
line it presently is on.

A7 ON (control N) turns the A7 bit flag on. PLO‘I— Bi(}‘ LQTTE QS,V
BLINK/A7 OFF (control O) turns the blink bit and A7 bit off.

BLACK KEY (control P) sets either foreground or background to color black.
RED KEY (control Q) sets either foreground or background to color red.

GREEN KEY (control R) sets either foreground or background to color green.
YELLOW KEY (control S) sets either foreground or background to color yellow.
BLUE KEY (control T) sets either foreground or background to color blue.

VIOLET KLY (control U) sets either foreground or background to color violet.

22

23

24

25

26

27

28

29

30

31

CYAN KEY (control V) sets either foreground or background to color cyan.
WHITE KEY (control W) sets either foreground or background to color white.
XMIT (control X) causes data to be transmitted from the visible cursor
to the end of page or until FF/0OO0 is found in Refresh
RAM.
CURSOR RIGHT (control Y) causes the cursor to move right 1 position.

CURSOR LEFT (control Z) causes the cursor to move left 1 position.

ESC (control [) provides an entry to the escape code table- must be
followed by one or more codes for proper operation.

CURSOR UP (control \\) causes the cursor to move up one line.
FG ON/FLAG OFF (control_]) sets the flag bit off. .
BG ON/FLAG ON (control /\) sets the flag bit on.

BLINK ON (control — sets the blink bit on.

SUMMARY OF ESCAPE CODES

FOR INTECOLOR 8001

5 BIT CODE LETTER FUNCTION
0 @ Visible cursor mode
1 A Blind cursor mode
* 2 B Plot via color pad
3 C Transmit cursor X,Y position
4 D Not used
#E5 E Re-entry to BASIC 8001
6 F Sets full duplex mode
7 G Not used
8 H Sets half duplex mode
9 I Not used
10 J Set write vertical mode
11 K Sets roll up and write left to right mode
12 L Sets local mode
13 M Not used
14 N Not used
* 15 0 Re-entry to the CPU operating system
* 16 P Initializes and transfers control to

the CPU operating system

* 17 0 ¥ Character insert mode
18 R Baud rate selection mode

A7 on = 1 stop bit, A7 off = 2 stop bit

* 19 S Transfer control to the 8080 assembler

* 20 T Transfer control to the text editor

* 21 U Insert one line

* 22 v Delete one line

* 23 W Initializes and transfers control to
BASIC 8001

*

5 BIT CODE

24

25

26

27

28

29

30

31

LETTER

X

Y

z
=
AN

|

FUNCTION

Sets page mode and write left to right
mode

Test mode - fill page with next character
Set write down on 45 degree mode

Not used

Sets write up on 45 degree mode

Set unit up for Block receive mode

Causes a jump to address 9FA@H

Transfer control to the CRT mode

Must include certain option to be operational

SUMMARY OF GRAPHIC PLOT SUBMODES

FOR INTECOLOR 8001

OPTIONAL

RS-232 INPUT PLOT NORMAL KEY- FUNCTION
CODE SUBMODE BOARD CODE KEYBOARD CODE

255 Plot Mode Escape Control ? F 15
254 Charactor Plot Control > F 14
253 X Point Plot Control F 13
252 Y Point Plot Control & F 12
251 X-Y Incremental Point Plot Control F 11
250 Xy of X Bar Graph Control F 10
249 Y of X Bar Graph Control 9 F 9
248 X max of X Bar Graph Control 8 F 8
247 Incremental X Bar Graph Control 7 F 7
246 Yy of Y Bar Graph Control 6 F 6
245 X of Y Bar Graph Control 5 F 5
244 Y max of Y Bar Graph Control 4 F 4
243 Incremental Y Bar Graph Control 3 F 3
242 Xy Vector Plot Control 2 F 2
241 Y, Vector Plot Control 1 F 1
240 Incremental Vector Plot Control @ F @

SUMMARY OF INCREMENTAL DIRECTION CODES
FOR INTECOLOR 8001

A X1 Ayl A x2 AY2
If BIT =1 A7 BRe A5| A4 A3| Ap A1| A
Direction + - + - + = I
Value 80 40 20| 10 8 | 4 2 |1

Cs192]

CRT REFRESH MEMORY LAYOUT

The 2000 [384@] * characters for display are stored in a 4096
word RAM memory beginning at 32,768 (8000 HEX) and ending at

36,767 (8F9F HEX) [40,447

(A6 to AO).

(9DFF HEX)]
zero character stored as the A, bit and then the 7 bit ASCII code
The second word is the compositestatus for this character.

. The first word is the

It is composed of Plot Character Bit (A7), Foreground Blink (A6), Back-
ground color code (A5, Ay A3), and Foreground color code (A2, Ay, Ao).

memory , .
RAM memory location 8FAO HEX [9FA@] to S8FFF HEX [OFFF HEX]

Therefore, each screen character requires two 8 bit words in
(the screen character and the character's compositestatus). The

are used for

scratch pad storages. Memory location 8FBO [éFBO HEg]and 8FB1.C§FB£]
are the locations of the Cursor character position and line number

respectively.

the Roll Mode (Option 15) memory location 8FB2[:§FB2

provides the number of lines that the home position has been shifted or

rolled.

L [éndicates value for 48 Line Systeﬂq

REFRESH MEMORY WORD FOR ONE CHARACTER

EVEN

ASC II Code

PLOT BITS

10

1A
ODD = (EVEN +1)
BLINK FOREGROUND
IBIT B G R COLOR
A7 A6 A5 A4 A3 A2 Al AO
PLOT| BACKGROUND' B G R
BIT l COLOR

Secrets o{’ ﬁ\e Pv.mj\’\'nq O\I\OLTO\C\'erC':

o0
10
20

30
Ho
50
60
10
20
90
AO

BO
co

Do
E®
FO

61 234567 89ABCPEF

123 56789:; =>7
ABCDEF HITXLMNO
Q STUVW 2 NI~
abcdefaghiikl
rstuvwxyz 1 -
e i '
v UvVw Yz .
LI 74 ' 1=
23) 6 3 =>7? B;\G LETYE R_‘i.‘{'\:& %a\‘g 'S ?r'm’\’ed or
F [T kL MNO odd \ines, bollom hat¥ on even lives.
QARSTU VW XY J A S.QMQ,' QSC’I'_C characker ?r'w:&s vl,,—ﬂh halves
ab ¢ d e & W) n‘; d‘q:eﬂna on\ ‘0\/ twe \ocation. !
arstuvuw yz epeoils 80+ AF, BIG LETTERS.

Can .Se‘\’ hmded extca characters
plotfing some |eftec Fops wita
letiec bottoms...cannoct ’YO{:JYaPs wiily JtopS‘-

PART IT

Keyboard

The Intecolor 8001 has a detachable keyboard which presents
the standard ASCII four level code. (See Appendix A-1 for keyboard layouts).
The keyboard keys are optically encoded by means of phototransistors, a
light source and shutters attached to the keys. There are no switches
to wear out and the unit is RFI free. The Keyboard does not provide
two key rollover.

CPU Reset

The CPU Reset key provides a reset signal to the 8080 CPU.
Its primary function is to allow the operator to regain control of the
terminal if the software the customer has installed gets hung in an
endless loop. If the reset is operated properly the bell will issue a
short beep upon the release of the key. If automatically forces the
terminal to the S, state. That is, just as if the power had been turned
off and then back on. If additional RAM memory is installed this memory
area is not cleared, but the scratch RAM area within the CRT Refresh RAM
card is cleared.

Control Key
The control key must be held down while the proper alpha numeric key

is depressed if a control function is desired. The control functions are either
color coded or have its desired results engraved oh top of the key. Those keys

which have a name enclosed within a () parentheses indicate that they are also
standarized escape codes. The escape codes only require that the ESC key
be depressed then the () parentheses key desired,

Shift Key

The shift key must be held down while the proper alpha numeric key
is depressed if a shifted function is desired. Note that both the control and
shift key must be held down to generate certain codes from the keyboard using
the alpha numeric keys. See Appendix A-2 for the keyboard code set.

11

DETAIL OF CONTROL CODES

All of the display commands can be entered either through the
serial input port or the keyboard. The keyboard input port has the highest
priority of all inputs or outputs. The eight bit Intecolor 8001 code
set as shown in Appendix A-2 must be used for the serial input port. The display
control commands are a subset of the 32 ASCII control code set, and a flow
diagram of these commands is shown in Appendix A-3.

With some display commands, such as the Graphic Plot Mode,
delays may be experienced at the higher baud rates. A chart for these
delays is shown in Appendix A4.

The Intecolor 8001 display commands has been expanded by
an additional 32 commands via the ESC, character sequence as shown in
Appendix 5. The terminal employs two input pointer flags, one for the
keyboard and one for the RS232C input. Each flag may point to a
different Mode of operation and thus the terminal can act differently
from the keyboard as compared to the RS232 input. (See blind cursor
operation Code 1 on page 19)

Code @ Null (Control @)
Has no ‘effect upon the display
Code 1 Protect (Control A)

Not presently implemented so it has no effect upon the
unit.

Code 2 Graphic Plot Mode (Control B) - (Option 02)

The general Graphic Plot Mode is entered by a
binary code 2 or a Control Code B. (See Appendix B). It should be
noted that the XY Plot Mode is also entered at the same time. If a
plot mode other than XY Point Plot is desired, the next word that follows
should then be a binary code from 240 to 255. These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes.

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode.
This causes an XOR function to exist when plotting. Therefore, if you
plot the same point, bar or vector twice, the second time erases the
original.

: Once in the general Plot Mode, any of the plot submodes
may be entered by sending the corresponding code to the terminal. When
this code is received, a flag internal to the terminal, known as PLOFL,
is set placing the terminal in the appropriate plot submode. It should
be noted that in many of the plot submodes, PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode. This is done to make coding and
operation of the terminal in the various plot functions easier for the
operator. The various submodes and their interactions are explained in
detail in Appendix B.

12

Code 3 Cursor X-Y (Control C)

The visible cursor may be positioned any where on the
screen simply by sending a 3-word sequence beginning with 03. The
next two words that follow determine that X character position (0-79)
and Y line position (0-24) for 25 line unit or [0-47] for 48 line unit.
Both X and Y values must be in binary form with the range indicated.
The cursor home position (i.e., the top left hand corner) is position O, O
while the bottom right hand corner is (79, 24) or [}9, 4i].

If the cursor is positioned at X = 80 binary (50 HEX) then the cursor will
e G . But if a character is typed it will be positioned at the
beginning of the line specified by Y + 1, the cursor then reappears in
character position 1. Any cursor command will automatically force the
cursor to reappear at the proper position in relation to character position
O, line Y + 1.

If the cursor X values is 81 binary (51 HEX) or larger then
the CRT ignores this as the visible cursor X values and sends the
unit into the blind cursor addressing mode. Once in the blind cursor
X-Y addressing mode three (3) additional words must be sent. They are
blind cursor X value, blind cursor Y value, and the blind status word.
The blind X value must be in the range of 0-79 and the blind Y value

must be in the range of 0-24 or [@—4i] . The blind status word must
be in the same format as required in the CCI mode (control F). See the next
bage ,

The blind A7 bit will be set on by sending from 128 binary to
255 binary instead of 81 binary when going from the visible cursor
X,Y mode to the blind cursor X,Y mode. The Blind A7 bit will be set off
anytime a binary number between 81 and 127 is used to get into the blind
X,Y mode.

It should be noted that the X and Y cursor values received
are masked to 0-127 and 0-31 ‘@—6%] respectively. Then, if the value is
still out of range, the X value has 80 subtracted and the Y values has 25
[48] subtracted.

When exiting from the blind cursor X-Y mode the terminal is
left in the blind cursor mode for what ever input device caused the
mode to be entered. That is if after CPU reset is operated the keyboard
causes the blind cursor XY to be addressed then the keyboard will be

left in the blind cursor mode while the RS232 serial is still in the
visible cursor mode.

Code 4 EOT (Control D)

Has no effect upon the display

Code 5 - (Control E)

Has no effect upon the display

13

Code 6 CCI - (Control F)
When this code is received the system accepts the next
eight bit word from the serial input as the new compositestatus for the

characters which follow. See CRT Refresh Memory Section.

The first three bits represents the Foreground Color with

RedF=A . Greenp=A,, and Blue =A,. The next three bits represent the
Background Color (optional) witg Redp=A3, Greenpg=34, and BlueB=A5. The next
bit, Ag is the bit for the Foreground Color and the last bit, A5 is Plot

Character bit which causes the display to interpret the ASCII word as a 2x4 plot
array.

Code 7 Bell (Control G)
- When this code is received a tone will sound for about 150 MS.
Says on u. , BASIC ram reads |, END, o INPU .30 & ‘ooP
can be u +o ince: tone dur on.
Code 8 Home -~ (Control H)

When this code is received the cursor moves to 0,0 or the
top left hand corner of the screen.

Code 9 Tab (Control 1I)

When this code is received the cursor moves horizontally
to the next tab position. The tab are fixed and are at
every eight positions from zero.

Code 10 Line Feed (Control J)

When this code is received the cursor moves down one line.
This is the only code used for cursor down.

Code 11 Erase Line (Control K)

When this code is received a carriage return is initiated and
the characters from the beginning to the end of the line are replaced with
spaces and have the same color and status as the present visible CCI
status. The cursor is always positioned at the beginning of the line.

Code 12 Erase Page (Control L)

When this code is received the screen is replaced
with spaces that have the same color and composite status as the present
visible CCI status. The cursor always returns to the Home position. The blind
cursor is also positioned at home.

Code 13 Carriage Return (Control M)

When this code is received, the cursor returns to the beginning
of the line that it presently is on.

14

Code 14 A, On - (Control N)

Upon receiving this code, the characters which are to be

This bit is used to allow 2X

This effectively doubles the number of
displayable character types from 128 to 256.

displayed have A- forced to a "1".
character sizes for 48 line units.

Code 15 Blink - A5 - OFF

- (Control 0)

When this code is received the characters which follow have
A5 On as above) and also have the
Blink bit, Ag of the composite status for the character set to "O"
(i.e., the opposite of Blink-On per Code 31.)

A, set to "0" (i.e., opposite to A

Code 16 to 23 or Color Keys

Black (Control
Red (Control
Green (Control
Yellow (Control
Blue (Control
Magenta (Control
Cyan (Control
White (Control

P)
Q)
R)
S)
T)
U)
V)
W)

Code
Code
Code
Code
Code
Code
Code
Code

When one of these eight codes is
things happens, depending upon the Flag bit.
the key that is depressed will change the compositestatus to that

Foreground Color code.

16
17
18
19
20
21
22
23

There are eight color keys

Ay

i
=

>
o

HKHKFRFROOORO
HEHOORKKHOO
HOROKF OHO

received then one of two

If the Flag is off then

If the Flag is on, then the key that is depressed will change
the compositestatus to the Background Color code. If Background
Color option is used, then it will display that color. If Background Color
option is not supplied, then no effect will be noticed.

Note that when the plot via color pad is selected, one of the eight color
select keys will select one of the eight plot blocks. The plot option 2 is installed

See Escape B section for details.

Code 24 Transmit

(Control X)

Whenever control X is received the terminal starts transmission
from the visible cursor present position to the end of the screen, or
until it detects a FF, @@ Hex sequence in the Refresh memory.

The transmission sequence is terminated by a carriage return,
either @D Hex or 8D Hex at the customer option. It should be noted that
there may be many @D Hex or 8D Hex imbedded in the data transmission
since these are legal words in the refresh memory.

15

The transmission sends each 8 bit word in memory in
sequence. That sequence is the ASCII character, then the status of that
character, by the next ASCII character and then its status until
the FF, @@ sequence is detected.

The best way to have this data sent back to the terminal
is via the Esc:] or block receive mode.
Code 25 Cursor Right - (Control Y)
Moves the gursor right one character without destroying
any information.
Code 26 Cursor Left (Control 2)
Moves the cursor left one character without destroying
any information.
Code 27 Escape (Control [:)
The Escape command effectively expands the control code
set by 32 additional code capabilities. This requires at least a two
code sequence (ESC, letter) which then performs a given function. At
present only 26 of the 32 additional command capabilities have been

enabled. These commands are given in the following table. (For Detail see
the Escape Code Section).

ESCAPE CODE TABLE - Page 17

16

ESCAPE CODE TABLE

DECIMAL
OPTIONS CODE LETTER FUNCTION
0 @ Visible Cursor Operation
1 A Blind Cursor Operation
* 2 B Plot Via Color Pad
3 C Transmit Cursor X,Y Position
4 D Not Used
k. 5 E Re-Entry Control to BASIC 8001 system
6 F Sets Unit to Full Duplex
7 G Not Used
8 H Sets Unit to Half Duplex
9 I Not Used
10 J Sets Unit to Write Vertical
i 11 K Sets Unit to Roll up Mode & write Left to Right
12 L Sets Unit to Local Mode
13 M Not Used
14 N Not Used
15) Re-Entry control to the CPU Operating System
E 16 P Initializing & Transfers Control to the CPU
Operating System
* 17 0 Allows Operation in Character Insert Mode
18 R Allows Selection of 1 of 7 Baud Rates
& 19 S Transfers Control to the 8080 Assembler
L 20 T Transfers Control to the Text Editor
i 21 U Inserts one line (80 blanks)
b 22 \Y Deletes one line (80 blanks)
t 23 1) Transfers Control to BASIC 8001 Software
24 X Sets Unit to Write Left to Right & Page Mode
25 Y Test Mode-Fills Screen with Next Character
26 Z Sets Unit to Write Down on 45 Degrees
27 C (EsC) Not Used
28 N Sets Unit to Write Up on 45 Degrees
29 :] Sets Unit to Block Receive Mode
30 /\ Causes a Jump to Ram Address 9FA@H
31 —_— Transfers Control to the CRT Mode

The letters are presented for easy reference; i.e., (full
duplex mode requires ESC, F sequence). It should be noted that the Escape
control codes can be any 8 bit value so long as the 5 least significant
bits are correct for the operation desired. The terminal simply masks off
the undesired higher order bits. The Keyboard and RS232C input port has
separate and independent Flags which determine some of the CRT modes.
Therefore, the Keyboard may be in the character input mode while the RS232
input may be in the Plot mode or vise versa. The input port and the Keyboard

can operate completely independently of each other. See Details of Escape Codes
section for more information.

17

Code 28 Cursor Up (Control \)

Moves the cursor up one line without destroying any
information. This is effectively the opposite of a Line Feed operation.

Code 29 Flag Off - (Controll)

When this code is received the Reverse Field flag is
set to "0O". Effects the special character codes (96 to 127) and the
color codes (16 to 23).

Code 30 Flag On - (ControlA)

When this code is received the Reverse Field flag is
set to one. Effects the special character codes (96 to 127) ; the color
codes (16 to 23); and the plot modes.

Code 31 Blink On - (Control_)

When this code is received the Blink bit Ag of the
composite status is set to a "1".

This bit is turned off when the Blink-Protect~Off key
is operated (see Code 15).

Code 32 to 95 - Numbers and Letters

These provide the standard printing ASCII Upper Case
characters, punctuations and numbers. See Appendix A-2 for code set of the
the Intecolor® 8001.

Code 96 to 127 Special Characters

These codes provide either 32 special characters (such as
lower case ASCII characters) or 64 special characters. The 64 special characters
are actually two groups of 32 special characters. A group is selected depending
upon the condition of the Flag bit. If the flag bit is off then the codes are not
changed when they are placed in the CRT refresh RAM. If the flag bit is on then
these codes have 96 subtracted from them before they are replaced in the CRT
refresh RAM. Therefore they are mapped into O to 31 within the CRT refresh memory.

18

DETAILS OF ESCAPE CODES

@ or Code O Visible Cursor Mode

This is the terminal's normal mode of operation and
it is also the startup state. A received character is placed at the visible cursor
location. The cursor then advances to the right one position awaiting the
next character. All normal cursor operations are applicable to placing
the cursor at a different location.

A or Code 1 - Blind Cursor Mode

This optional mode provides for a dual cursor operation.
That is, normally the host computer will operate in the blind cursor
mode and the keyboard in the visible cursor mode. The two modes will
not interact with each other. There is also a blind status which may be
different than the visible status. The only blind cursor movements allowed are
a subset of the cursor X-Y positioning. See Code 3 or control C. This mode
allows operation without delay for ASCII TEXT at rates up to 38.4 K Baud.

B or Code 2 - Character Plot Via Color Pad

When the plot option is installed then this plot mode
will be available. It will normally be used via the color pad, but can
be used without it. It provides a mix between the Plot Mode and the normal
ASCII Character Mode. Instead of responding as described in
Character Plot, this mode uses only eight codes to intensify each of the
eight blocks within a character. These intensifying codes are the normal
color select codes (Control P through W).

This option normally wuses the color select pad on the keyboard.
The pad is arranged as shown below.

Black Blue
Red Magenta
Green Cyan
Yellow White
Color Selection One
Pad Character Plot

Aray

One Plot Block Selected by Green

Figure 2.5.6.1
19

From the above it is easy to see the one to one
correspondence between the 2x4 color select pad and the 2x4 character
plot blocks. Thus, this mode is designed especially for use by the
keyboard to simplify the drawing of graphs or the correcting of graphs.

in this mode a block at the top right hand corner of the cursor
present position can be intensified by pushing the top right hand corner
key in the color select pad, (in this case the blue key or Control T or
Code 20). Once that plot block has been intensified, any other plot
block at that same character location can also be intensified since the
cursor does not automatically advance. If the blue key was to be pushed
the second time, then the already intensified plot block will be
extinguished. This effectively allows any one plot block to be erased.
After all desired plot blocks have been either intensified or extinguished,
the cursor may be conventionally moved without escaping from this
special text and character plot mode. In fact, all of the control codes
are effective while in this mode except the color select control codes,
and any of the ASCII Text characters can be entered and displayed. Any
code that requires a two key or more sequence (such as cursor X-Y, CCI,
and ESC) will terminate the mode. It should be noted that the ASCII
Character when entered and displayed advances the cursor as previously
done in the visible mode, but the plot blocks (generated by the color
pad) do not advance the cursor. Therefore, when a character position has
been used to display plot blocks a cursor command must be given to
advance the cursor to the next position.

C or Code 3 - Transmit Cursor X,Y

When this code is selected the terminal sends out the
following 7 word sequence:

03, X, ¥, 06, Status, ASCII Character, CR.

The X and Y values represents the cursor position on the screen. The
status is the status of the ASCII character at that cursor location. The
CR may be either a @D or an 8D HEX at the customer request.

This sequence of transmission is the same that the light pen
would provide if the unit is so equipped.

E or Code 5 - Re-Entry to BASIC 8001

Return to BASIC 8001 without destroying the BASIC 8001
source program which is in Ram memory.

F or Code 6 - Full Duplex Mode

When this mode is selected then the Keyboard characters
are only sent to the RS232C serial port. They are not processed by the
terminal. Therefore, once the unit is put in the full duplex mode via
the keyboard, then the only "normal" way the mode can be changed to
local or half duplex is via the RS232C serial port. There are two other
ways that have been provided to regain local control. One way is to
operate the CPU Reset key on the Keyboard, which will initialize the
terminal as if power has been just turned on. The other way is to

20

operate the break key on the keyboard. When this is done a break of 150 MS
will be transmitted on the RS232C serial port, and the terminal will be
forced into the half duplex mode.

H or Code 8 - Half Duplex Mode
When this mode is selected then the keyboard

characters are not only processed by the terminal but are also sent to the
RS232C serial port.

J or Code 10 - Write Vertical Mode

This effects the visible cursor mode only and causes
the terminal to enter characters vertically one below the other. All
other cursor movements are possible via the cursor mode. After a character
is entered the cursor is moved down one character awaiting the next
character. Upon reaching the last line the next character will be on
the top line, 1i.e. wrap around occurs.

K or Code 11 - Roll Mode (option 15) Write left to right

When this mode is selected the terminal will cause a page roll
up when the last line has been filled. All48 line units roll two lines at a time
while 25 line units roll only one line. Note the plot mode and blind cursor mode
only work in non-roll mode. This mode also sets the visible cursor to write left to
right.
L or Code 12 - Local Mode

When this mode is selected then the keyboard characters
are displayed on the terminal, but they are not sent tothe RS232C serial
port. In this mode the RS232C serial input port can receive data or change
this mode. The terminal can be made to transmit out of the RS232C port,
while in the local modeby typing Control X or ESC C.

O or Code 15 - Re-Entry to CPU Operating System Mode

Causes the same result as Code 16 below but does not
reinitialize the I/O Byte or the second RS232C channel Baud rate.

P or Code 16 - Initialize CPU Operating System Mode

When this optional mode is selected the terminal enters
into the CPU Operating System. It then obeys all the commands that
are allowed in the CPU Operating System. See the CPU Operating System Manual.

Q or Code 17 Character Insert Mode

Once in this mode the CRT acts exactly like the normal
visible cursor system for all control commands except for those requiring
a 2 or more character sequence (such as Cursor XY, CCI, and ESC).
When any character is typed or received via the RS232C input, it is inserted
within the line at the cursor present position and every character

21

after the cursor to the end of the line is shifted right one character
position. The last character on the line is lost forever. The cursor

is also advanced one position. The above is trweexcept for control codes,
and "Delete" or (shift ' ') keys (code 127).

When the "delete" key is depressed or code 127 is
received via the RS232 input port then the character at the cursor present
position is deleted and all characters to the end of the line are
shifted left one character position. The last character on the line
becomes a space. The cursor does not advance.

When the "ESC" key is depressed then the character

insert-delete mode is terminated after the second character is selected. The
terminal then normally returns to the visible character mode.

R or Code 18 - Baud Rate Selection Mode

When this mode is entered the unit then accepts the
next character as one of seven baud rates. It does this by looking at
only the first three bits. Therefore, any 8 bit character that has the
desired 3 lower order bits will do. Normally the keyboard numbers 1 to
7 are used. The baud rates and the corresponding numbers are indicated in
the table below:

Number 1 2 3 4 5 6 7

Normal Baud | 110 150 300 1200 2400 4800 9600
Rate

High Speed 880 1200 2400 9600 19,200 38,400 |76,800

Baud Rate

The unit is initialized with power up at normally 9600
baud, with one stop bit. This initialized baud rate can be specified by
the customer at any of the fourteen above rates when ordered. It
should be noted that only in certain modes (blind cursor mode) can the
38,400 Baud be used with delays. In no case can 76,800 Baud be used
without delays. The unit may be ordered with either normal baud rates
or with the High Speed Baud rates. The two different rate systems cannot
be mixed.
The number of stop bits will be determined when the baud rate
is set by the condition of the A7 flag. If A7 was on before the rate is selected,

1 stop bit is selected; 1if A7 was off before the rate is selected 2 stop bits
are selected.

S or Code 19 8080 Assembler Mode
When this optional mode is selected the terminal enters

into the 8080 Assembler Mode. It then obeys all the commands that are
allowed in the 8080 Assembler. At present this option is not available.

22

T or Code 20 - Text Editor Mode

When this optional mode is selected the terminal enters
into the Text Editor Mode. It then obeys all the commands that are
allowed in the Text Editor. At present this option is not available.

U or Code 21 - 1Insert Line Mode

When this mode is selected the cursor moves to the
beginning of the line it is presently on and this line and all lines to
the end of the page is shifted down by one line. Then a new line
of 80 spaces (or blanks) are inserted with the cursor
remaining at the beginning of that new line.

Normally the cursor will be at the beginning of the

line to be inserted when this mode is used. After a line has been inserted
the terminal returns to the normal visible character mode.

V or Code 22 - Delete Line Mode

When this mode is selected the cursor moves to the
beginning of the line it is presently on and this line is deleted. All
lines to the end of the page are shifted up by one line. Then a new
line of 80 spaces (or blanks) are inserted at the bottom of the page.

The cursor will remain at the beginning of the line that had been deleted.
After a line has been deleted the terminal returns to the normal visible
character mode.

W or Code 23 - BASIC 8001 Language Mode

When this optional mode is selected the terminal enters
into the BASIC 8001 Language mode. It then obeys all the commands that
are allowed in Basic 8001. See the "BASIC 8001 Manual".

X or Code 24 - Page Mode Write Left to Right

When this mode is selected the terminal will not roll
up when the last line has been filled, but will begin at home again. The
terminal is also placed in the write left to right mode. This is the
normal power up mode. This mode affects all modes that use the visible
cursor. The blind cursor and plot modes will only operate in the page mode.

Y or Code 25 - TEST Mode

When this mode is selected the next character that follows
causes the complete screen to be filled with that character. Note use ESC,
Y, . for a convergence test pattern.

23

Z or Code 26 Write Down 45 Mode

When this mode is selected the terminal will place
the character at the present visible cursor and will then cause a cursor
right followed by a line feed to occur. Therefore, the next character
entered will be to the right and down one position from the previous
character. When the bottom of the page is reached the next character
will appear on the top of the screen, i.e., wrap around occurs.

C or ESC or Code 27 No Effect Code

Performs a return to visible character mode.

\\ or Code 28 - Write Up 45 Mode

When this mode is selected the terminal will place the
character at the present visible cursor and will then cause a cursor right
followed by a cursor up to occur. Therefore, the next character entered
will be to the right and up one position from the previous characters.
When the top of the page is reached the next character will appear on
the bottom of the screen, i.e., wrap around occurs.

:] or Code 29 Block Receive Mode

Causes the unit to enter into the block receive mode.
Uses the blind cursor to position the data. Looks for a (FF), (0O)
HEX sequence to terminate back to the visible cursor mode. Note this
is same format as when control (x) or page transmit is requested. Note
page transmit starts at visible cursor and ends at end of page or when
an (FF), (00) HEX sequence is found.

/\ or Code 30 Jump to RAM 9FA@H
When this code is received the CRT O.S. branches to

location 9FA@H. Therefore, the user must patch into RAM address 9FA@H
a jump to his program.

— or Code 31 - Transfers Control to the CRT Operating System

When this code is received, the unit is forced to the
CRT 0.S. mode. If Option 34, the CPU is also installed, then a
message will be printed saying:

YOU ARE NOW IN THE 8001 CRT MODE

24

DETAIL OF GRAPHIC PLOT SUBMODES

Code 2 Graphic Plot Mode (Control B) - (Option 02)

The general Graphic Plot Mode is entered by a
binary code 2 or a Control Code B. (See Appendix B). It should be
noted that the XY Plot Mode is also entered at the same time. If a
plot mode other than XY Point Plot is desired, the next word that follows
should then be a binary code from 240 to 255. These codes represent
the various plot submodes as shown in the summary of Graphic Plot Submodes.

An additional feature is available to allow a graphic plot to
be erased by simply setting the Flag bit on before entering the plot mode.
This causes an XOR function to exist when plotting. Therefore, if you
plot the same point, bar or vector twice, the second time erases the
original.

Once in the general Plot Mode, any of the plot submodes
may be entered by sending the corresponding code to the terminal. When
this code is received, a flag internal to the terminal, known as PLOFL,
is set placing the terminal in the appropriate plot submode. It should
be noted that in many of the plot submodes, PLOFL is automatically set to
a different value upon completion of the operation of that submode causing
the terminal to enter a new submode. This is done to make coding and
operation of the terminal in the various plot functions easier for the
operator. The various submodes and their interactions are explained in
detail in Appendix B.

In addition to being able to enter the plot submodes
from the general Plot Mode, any plot submode may be entered from any other
plot submode with the exception of the Character Plot Mode.

25

Colors may be defined on a character by character basis only
and the color of an individual plot block as well as all other intensified
plot blocks within a character will be the most recent color defined when
a new block is intensified in that character. To change a color, it is
required that the Plot Mode or plot submode be terminated, the color
changed, and the Plot Mode be re-entered.

The character grid is made up of 80 characters wide by 25[}8}
lines high. The 0 reference point for all plotting is always the lower
left corner. Each character is further broken up into 2 blocks wide
by 4 blocks high which then causes the plot grid to be 160 blocks
wide by 100[19%]b10cks high. All plot submodes operate on this size grid
and have the same reference point. Positive direction is considered up
and to the right and negative direction is considered down and to the left.

All plot submodes and the general Plot Mode are terminated
or exited by the binary code, 255. Whenever this code is received,
the modes are terminated and must be re-entered as described above.

Appendix B-2 gives a convenient summary of the codes
required to enter the Plot Mode and the various plot submodes as well as
the status of PLOFL before and after each operation and the ranges of each
operation.

Plot Mode Escape (255 binary)
This code is used to exit from the Plot Mode or any

of the plot submodes. The control "?"or F15 is used to escape from
the Plot Mode from the Keyboard.

Character Plot - (254 binary)

The Character Plot is entered by a 254 after the general
Plot Mode, "2" or Control Code B, is entered. From the Keyboard use
Control "2 " or Fl4. It may also be entered directly from any of the
other plot submodes. After entering the Character Plot, the next word
will be treated as a plot character except for code 255 binary or (FF)
hexadecimal (i.e. all eight bits are "1l's"). See Appendix B-

The general Plot Mode and the Character Plot terminate
upon receipt of a 255 code. The above procedure must be repeated after
a 255 code terminates the Plot Mode and the plot submodes.

Other plot submodes may not be entered from the Character
Plot. To enter other plot submodes, the Character Plot must be terminated,
the general Plot Mode entered and the plot submode entered with its associated
code.

26

The procedures for entering and exiting the Character
Plot are shown below.

Function Code
Plot Mode 2
Character Plot 254
Plot Character 1 0 to 254
Plot Character n 0 to 254
Plot Escape 255

The Character Plot causes the 6 wide by 8 high dot
matrix to be divided into 8 blocks organized 2 blocks wide by 4 blocks
high. Each block consists of a sub-dot matrix of 3 dots wide by 2 dots
high. Each block may be individually intensified by defining the bit
(one of eight bits) associated with the block in the plot character.
Bits may by "ORed" together for a combination of blocks in a plot character,
creating a form of graphics for plotting data or drawing diagrams.
Large characters may also be created by utilizing the blocks of several
character positions to create a large 5x7 dot matrix.

X Point Plot - (binary 253)

The X Point Plot is automatically entered upon receipt
of the general Plot Mode code, binary code 2, or Control Code B. It
also may be entered directly from any of the other plot submodes except
Character Plot. From the Keyboard use Control "=" or F13. After
entering the X Point Plot, the next word defines the X value
of the block that is desired to be plotted See Appendix B-
The X value in this mode may range from binary O to 159 and all other
values will cause 160 to be subtracted and the resultant value of X to
be computed.

The X Point Plot may be terminated by code 255 which
causes the general Plot Mode to be terminated also. Any of the other plo
submodes may be entered directly from the X Point Plot by simply entering
the appropriate plot submode codes which range from binary 240 to 254.

It should be noted that this mode does not cause a
block to be intensified, but only causes the X value to be defined. Once
the X value is sent, the terminal is automatically placed in the Y Point
Plot mode. Thus, the next code sent will be the Y value, which may range
from binary 0 to 99 [b—l9i}. Upon receipt of the Y value, a plot block
will be intensified on the CRT screen at the X value and Y value intersection.
The terminal is then automatically placed in the X Point Plot mode and the
next word sent will be interpreted as an X value.

Therefore, once in the X Point Plot mode, new
blocks may be defined by simply sending X values and Y values consecutively,

without the necessity of re-entering the X or the Y Point Plot modes.

27

The procedures for entering and exiting the X Point Plot mode are shown
below:

Function Code
Plot Mode* 2
Xl Value 0 to 159
Y, Value 0 to 99 (0-191)
Xn Value 0 to 159
Y Value 0 to 99 (0-191)
Plot Escape 255
or or
Plot Submode 240 to 254

* Automatically X Point Plot mode also

NOTE: SEND Code 253 between X,Y data sets if necessary
for timing considerations. See Appendix A-4 for delays.

The X Point Plot in conjunction with the Y Point Plot
allows any block on a 160 wide by 100 (192 for 48 Line) high block
matrix to be positioned to and intensified. If the new block is within
a character position that is a previously intensified ASCII character, then
the ASCII character is replaced completely by the new block and its
associated color.

Y Point Plot - (binary 252)

The Y Point Plot is entered by a binary 252 code
after the general Plot Mode is entered. See Appendix B-
From the Keyboard use Control " " oor F12. It may also be entered
directly from any of the other plot submodes except Character Plot
(binary 254). It is more commonly entered automatically from the X
Point Plot mode. After entering the Y Point Plot, the next word defines
the Y value of the block that is desired to be plotted and causes the
block to be intensified in accordance with the Section on (binary 253). The Y
value in this mode may range from binary O to 99 (0-~191) and all larger
values will cause 100 (192) to be subtracted from the new value of Y to
be calculated.

Upon receipt of the Y value, the X Point Plot is
automatically entered by the terminal. The X value of the next block to
be plotted may then be sent as explained in the Section on (binary 253).

The Y Point Plot is terminated by Code 255 which causes
the general Plot Mode to be terminated also. Any of the other plot submodes
may be entered directly from the Y Point Plot by simply entering the appropriate
plot submode codes which range from binary 240 to 254.

28

Therefore, once in the Y Point Plot mode, new points
may be defined by simply sending X values and Y values consecutively
without the necessity of re-entering the X or the Y Point Plot modes. The
procedures for entering and exiting the Y Point Plot mode are shown below:

Function Code
Plot Mode 2
Plot Submode 252
Yl Value* 0 to 99
X, Value 0 to 159
Y2 Value 0 to 99
X, Value 0 to 159
Yn Value 0 to 99
Plot Excape 255

or or
Plot Submode 240 to 254

* Plots point using whatever previous X
Value left in memory.

NOTE: Send Code 253 between X,Y data sets if necessary for
timing considerations. See Appendix A-4 for Delays.

XY Incremental Point Plot (binary 251.)

The XY Incremental Point Plot is entered by code 251
after the general Plot Mode is entered. From the Keyboard use Control
";" or F1ll. It may also be entered directly from any of the other plot
submodes, except Character Plot. After entering the XY Incremental Point
Plot mode, the next word defines the next two increments as shown in
Figure below. This word may have a range from binary O to 239 since binary
240 to 255 is used for the plot submode codes.

by bg bg by b, b, by by
AX) AYy L% hY>
Plot Plot
Block 1 Block 2

29

n+l n

0 0 No Change

1 0 Positive Increment
0 1 Negative Increment
1 1 No Change

n=0, 2, 4, 6

If bO through b are "O"s, then the plot block will
not print but will increment one increment according to the coding of
b, through b;. This allows the user to easily "skip" a plot increment
by plotting with an invisible block.

It should be noted that the XY Incremental Plot mode
does not automatically transfer the to any other plot submode
upon receipt of an incremental change word,but remains in the XY
Incremental Plot mode ready to receive another incremental change word.
Therefore, a series of incremental movements may be made by sending
consecutive incremental change words.

The XY Incremental Plot mode may be terminated by code
255 which causes the general Plot Mode to be terminated also. Any of the
other plot submodes may be.entered directly from the XY Incremental Point Plot
by simply entering the appropriate plot submode codes which range from binary 240
to 254.

The procedures for entering and exiting the XY
Incremental plot mode are shown below:

Function Code
Plot Mode 2
or or
Plot Submode 240 to 253
XY Incremental
Point Plot 251
Incremental Change
Word 1 0 to 239

-

Incremental Change

Word n 0 to 239
Plot Escape 255

or or
Plot Submode 240 to 254

NOTE: Send code 251 between XY incremental point words
if necessary for timing considerations. See Appendix A-4 for Delays.

30

X Bar Graph, X, Value (binary 250)

The X Bar Graph, X Value is entered by a binary 250
code after the general Plot mode is entered. From the Keyboard use
Control ":" or F10. It may also be entered from any of the other plot
submodes except Character Plot. After entering the X Bar Graph, X5 Value
Mode, the next word sent defines the X, Value or the left horizontal
start block of the horizontal bar graph. The graph grid is referenced
to the lower left hand corner of the face of the CRT. The X5 may range
in value from O to 159 and all other values have 160 subtracted and the
new value calculated for Xg,.

Upon receipt of the X_ Value, the value of X5 is
stored in memory and the terminal is automatically placed in the X
Bar Graph, Y Value mode (binary 249). The terminal is now ready to
receive the next eight bit word as the Y position of the bar graph.
Upon receipt of the Y value, the terminal is then automatically placed
in the X Bar Graph, X Max Value mode (binary 248). The terminal is
now ready to receive the next eight bit word as the X Max Value.
Upon receipt of the X Max Value, the bar is drawn on the CRT and the
terminal is placed back into the X Bar Graph, Y Value mode (binary 251)
ready to receive a new Y value to begin the bar graph drawing process
over again as outlined above. This process is shown below and in

Appendix B.
Function Code
Plot Mode 2
or or

Plot Submode 240 to 253
X Bar Graph, X5 Value 250
X5 Value Word 1 0 to 159
Y Value Word 1 0 to 99 (0-191)
X Max Value Word 1 0 to 159
Y Value Word 2 0 to 99 (0-191)
X Max Value Word 2 0 to 159
Y Value Word n 0 to 99 (191)
X Max Word n 0 to 159
Plot Escape 255

or or
Plot Submode 240 to 254

NOTE: Use Code 251 between Y value, X max Value data sets
for timing considerations. Timing delays depends directly upon the
length of the bar being intensified. Seeappendix A-4 for delays both
minimum and maximum.

As can be seen from the above process, once in the
X Bar Graph, X, mode, it is necessary to send only two words, Y and X
Max, to completely define other bar graphs with the same X5 in the
horizontal direction. As before, any of the submodes can be entered
independently. After the first bar graph sequence, additional bar graphs
can be described by a new Y position for the graph and a new X Max

31

Value for the graph. The bar is drawn after the X Max Value is received
using the original value of Xj.

Any of the other plot submodes may be entered directly
from the X Bar Graph, entering the appropriate plot submode codes which
range from binary 240 to 254.

This mode allows bar graphs in any color or multiple
colors to be drawn with a width as small as one plot block wide or
areas under curves may be easily filled in.

X Bar Graph, Y Value (binary 249)

The X Bar Graph, Y Value is entered by a binary 249
code after the general Plot Mode is entered. From the Keyboard use
Control "9" or F9. It is more commonly entered from the X Bar Graph,
X5 Value automatically, and may also be entered from any of the other
plot submodes except Character Plot (binary 254). After entering
the X Bar Graph, Y Value mode, the next word sent defines the Y
or vertical position of the horizontal bar graph being drawn. The
Y value may range from binary 0 to 99 (0 to 191) and all other values
will have 100 (192) subtracted from it and the new value calculated for
the Y value.

Upon receipt of the Y value word, the value of Y is
stored in memory and the terminal is automatically placed in the X Bar
Graph, X Max Value mode, as explained more completely in the Section on
(binary 248).

Any of the other plot submodes may be entered directly
from the X Bar Graph, Y Value mode by simply entering the appropriate
plot submode codes which range from binary 240 to 254.

X Bar Graph, X Max Value (binary 248)

The X Bar Graph, X Max Value is entered by a binary
248 code after the general Plot Mode is entered. From the Keyboard use
Control "8" or F8. It is more commonly entered from the X Bar Graph, Y
Value automatically, and may also be entered from any of the other plot
submodes except Character Plot. After entering the X Bar Graph, X Max
Value mode, the next word received defines the X Max horizontal point of
the horizontal bar graph being drawn. The X Max Value may range from
O to 159 and all other values will have 160 subtracted from it and the
new value calculated for X Max Value.

Upon receipt of the X Max Value word, the bar graph
is drawn in the predefined color on the face of the CRT according to the
X, and Y value stored in memory from previous operations. The terminal
is then automatically placed in the X Bar Graph, Y Value mode, binary 249,
for the beginning of a new bar graph as more completely explained in the
Section on (binary 248).

Any of the other plot submodes may be entered directly
from the X Bar Graph, X Max Value mode by simply entering the appropriate

32

plot submode codes which range from binary 240 to 254.

X Incremental Bar Graph - (binary 247)

The X Incremental Bar Graph is entered by a binary 247
code after the general Plot Mode is entered. From the Keyboard use
Control "7" or F7. It may also be entered from any of the other plot
submodes except Character Plot. After entering the X Incremental
Bar Graph mode, the next word sent defines the next Eyg_horizontal and
vertical increments for two horizontal bar graphs. Thus, one may
position a bar graph each side of the present location and add or
subtract an increment to the bar graph previously defined. The coding
and composition is the same as explained in the Section on (binary 251). An example
is shown in Appendix B-6.

Y Bar Graph, Y, Value (binary 246)

The Y Bar Graph, Y, Value is entered by a binary 246
code after the general Plot Mode is entered. From the Keyboard use
Control "6" or F6. It may also be entered from any of the other plot
submodes except Character Plot. After entering the Y Bar Graph, Y, Value
mode, the next word sent defines the Y, or the vertical start point of the
vertical bar graph being drawn. The range of the Y, word is 0 to 99
(0-191) and all other values have 100 (192) subtracted and will have the
new value calculated for Y, Value.

All other operations are identical as explained in the
Section on (binary 250), X Bar Graph, Xp Value except that Y Bar Graph, X Value

and Y Bar Graph, Y Max Value are applicable for drawing vertical bar
graphs. An example is shown in Appendix B-5.

Y Bar Graph, X Value - (binary 245)

The Y Bar Graph, X Value is entered by a binary 245
code after the general Plot Mode is entered. From the Keyboard use
Control "5" or F5. It is more commonly entered from the Y Bar Graph,

Y, Value automatically, and may also be entered from any of the other plot
submodes except Character Plot. After entering the Y Bar Graph, X Value
mode, the next word sent defines the X, or horizontal position of the
vertical bar graph being drawn. The X Value may range from O to 159 and
all other values will have 160 subtracted and will have the new value
calculated for the X value.

All other operations are identical as explained inthe
Section on binary 249, X Bar Graph, Y Value except that Y Bar Graph, Yy Value

and Y Bar Graph, Max Value are applicable for drawing vertical bar
graphs. An example is shown in Appendix B-5.

Y Bar Graph, Y Max Value - (binary 244)

The Y Bar Graph, Y Max Value is entered by a binary
244 code after the general Plot Mode is entered. From the Keyboard use
Control "4" or F4. It is more commonly entered from the Y Bar Graph, X

33

Value automatically, and also may be entered from any of the other

plot submodes except Character Plot. After entering the Y Bar Graph,

Y Max Value mode, the next word received defines the vertical Y Max point
of the vertical bar graph being drawn. The Y Max Value may range from
binary 0 to 99 (0-191) and all other values will have 100 (192)
subtracted and will have the new value calculated for Y Max Value.

All other operations are identical as explained inthe
Section on (binary 248), X Bar Graph, X Value, except that Y Bar Graph, Yo Value
and Y Bar Graph, X Value are applicable for drawing vertical bar graphs.
An example is shown in Appendix B-5.

Y Incremental Bar Graph - (binary 243)

The Y Incremental Bar Graph is entered by a binary 243
code after the general Plot Mode is entered. From the Keyboard use Control
"3" or F3. It may be entered from any of the plot submodes except Character
Plot. After entering the Y Incremental Bar Graph mode, the next word sent
defines the next two horizontal and vertical increments for two vertical
bar graphs.

All other operations are identical as explained in the
Section on (binary 247), X Incremental Bar Graph except for the mode being

applicable for drawing vertical bar graphs. An example is shown in Appendix
B-6.

Vector Mode (binary 242)

The Vector Mode is entered by a binary 242 code after
the general Plot Mode is entered. From the Keyboard use Control "2"
or F2. It may be entered from any of the plot submodes except Character Plot.
After entering the Vector Mode, X5 Value, the next word defines the XO
Value point of the vector being drawn.

The Vector Mode the two end points to be
defined (i.e. X, Yo and X4 Y7). The Xl’Yl values should previously be
defined by way of the X,Y Point Plot Mode.

Upon receipt of the X, Value the terminal is automatically
placed in the Vector Y Value Mode (binary 241). The terminal is now ready
to receive the next eight bit word as the Y, Vector Value. Upon receipt
of the Y, Value the terminal then determines the best straight line fit between
Xyr Yo and Xj, Yj using the plot blocks. The terminal will then revert to
the Vector Mode X, value (binary 242), ready to receive the new X, Value
for another vector. The process is shown below and in Appendix B-7.

34

Function Code

Plot Mode 2
or
X point Plot submode 253
X1 Vector point 1 0 to 159
Y] Vector point 1 0 to 99 (191)
Xo Vector plot submode 242
Xo Vector point 1 0 to 159
Yo Vector point 1 0 to 99 (}91)
Xo Vector point N-1 0 to 159
Yo Vector point N-1 0 to 99 (191)
Xo Vector point N 0 to 159
Yo Vector point N 0 to 99 (191)
Plot Escape 255
or
Plot Submode 240 to 254

NOTE: Send code 242 between Y, vector point and X, vector point
words if necessary for timing considerations. See Appendix A-4 for
delays.

Vector Mode Y Value (binary 241)

The Y vector is entered by binary 241 code after the
general Plot Mode is entered. From the keyboard use Control "1"
or Fl. This mode is more commonly entered automatically from
the X, Vector mode. After entering the Y, Vector mode, the next word
defines the Y, value of the vector being drawn. There is no restriction on
Y, with respect to Y; except it must be in the range of 0 to 99 C19l). Upon
receipt of the Y _ value a vector is drawn from X7, Y] to Xo’ Yo with
the new X3;Y; now at the old X Y,. If the next vector has a X;Y; value =
X,Y, old, then only the new X,Y¥, need be sent. This would effectively draw
a vector from the present X, Y, position to the new X, Y, point. See
Appendix B-7.

Xo Yo - Incremental Vector Mode - (binary 240)

The X -Y, incremental vector mode is entered by a binary
240 code after the general plot mode is entered. From the keyboard use control
"@" or FP. It may also be entered from any of the other plot submodes
except Character Plot. After entering the incremental vector mode, the next
word sent defines the increments in X5, Y,, Xj and Y} point values for the
vector from X;Y; to X, Y,. This word may have a range from binary 0 to 239
since binary 240 to 255 are used for the plot submode codes.

Referring to the section on (binary 251), XY Incremental Point Plot
it can be seen that there is one two bit element available for each of the
4 points (i.e. X5, Y,, X and Yy). TheAXl,AY‘ refers to the increment in
X1, Y1 of the vector and the AXj, AYy refers to the increment in X, S of the
vector.

35

X+l X1 | Y+l Y-l Xo-1 Yo+l | Y-l

Therefore, if b, and bg are both 1 or both @ then no
increment will take place. If either half of the word is all zero then the
corresponding X,Y will be changed but no vector will be drawn. This allows
the user to easily "skip" points. The only time a vector will be drawn is
when both halfs of the word are non zero.

The incremental vector plot mode does not automatically
transfer control to any other mode. It remains in this incremental mode until
terminated by a plot submode code. Therefore a series of incremental
movements in both X,, Yoand Xj;Yjmay be made by sending consecutive incremental
change words.

The procedure for entering and exiting the XY Incremental plot
mode are shown below:

Function Code
Plot Mode 2
or or
Plot Submode 240 to 253
Incremental Vector 240
Plot Mode

Incremental change
in Xl’ Yl’ X5 YO

Word 1 0 to 239
Word N 0 to 239
Plot Escape 255
or or
Plot Submode 240 to 254

NOTE: Send code 240 between incremental vector words if
necessary for timing considerations. See Appendix A-4 for input
Delay Times.

36

LIGHT PEN OPERATION (Option 28)

The Intecolor 8001 Light Pen is designed to move the cursor on
the screen of the terminal by simply pointing to the desired location on the
screen and touching with the forefinger the touch-sensitive end of the light
pen. The touch sensitive end of the light pen acts as a switch or button.

To effect operation of the light pen, the pen is simply pointed to
the desired location on the screen. Either the standard lense or the long range
lense may be used in the same manner. When the desired location is reached,
the forefinger is placed on the touch-sensitive end of the pen and held

on the pen until the cursor on the screen resides at the location the pen
is pointing to. As long as the finger is kept on the pen the cursor will
follow the pen to any location.

When the cursor is at the desired location, 1lift the forefinger from the
tip of the pen and the following 7 word sequence will be transmitted to the J1
RS232 output port.

03 Cursor X-Y (See Code 3)

X X Cursor Coordinate

Y Y Cursor Coordinate

06 CCI (See Code 6)

Status Status Character (See Appendix A-6)
ASCII or

Special

Character

8D Carriage Return

Notice that this sequence is not transmitted unless the
finger first touches the end of the pen in the touch sensitive area and is
effected when the finger is lifted from the end of the pen.

Note that a blue flood is normal operation and occurs every

time the touch sensitive end of the pen is touched by the forefinger and
will repeat at a 2cps rate until the finger is lifted.

37

APPENDIX A

-

r

- T | [l T ST —— 1 ~TITTTr T v - r T [l
| [I | | | | | | 1 i | ! ! | ! 1
1 1 | | i 1 1 | | I 1 | | I 1 ! 1
| e 4 =]
L ! | $|% |8 () 7 BLAck | BLue [FOON
AN | 2 3 4 5 6 7 8 9 Q L e |
(NS (TEST) (NS
6 ROWS »5.906" CHAR) —= L) TAR LIS e RETURN 4 RED L
5 ROWS = 5.156" Q E R T Y u I 0 P @ C LG ON
BLINK
I GREEN| CYAN | "o
xMIT (DEL ')
SHIFT XY LINE) — white | PLoT
X Cc v B N AT OFF
WITH OPTION 8 AND 32
21.o10"
I - A roT R roa 3 T - T T T - T---A
N T T T A A
1 1 t !
| " —+
o —
[} ! b2 S % 8 ’ () = BLACK BLUE 5
AN | 2 3 4 5 6 7 8 9 Q =
(INS (BAUD (NS (cpu
CHAR) RATE) Ling) TAB opsyy) MULt LINE ReTURN
6 ROWS =5.906" Q E R u I P
5 ROWS =5.156" PROT €CI BELL | HOME ¢ + *
CTRL .
. A D F 6| H ;
XMIT (OEL PLOT oN
SHIFT XY LINE)
X Cc v N M
WITH OPTION 22
18,385" —>
! T [-r - T===7t= - T "] T
| | i i T 1 I 1 H | | 1 r | i
| | [[) [[[[[| I i | |
{3 (TEXT (INS tcpu
ESCAPE] EDIT) —e LINE) TAB ol S FLENE% RETURN
6 ROWS = 5.906" L 2 i A g & g @ E
5 ROWS =5156"
NOTE ® IF 16 FUNCTION KEYS ARE REQUIRED THEN
THEN A SIXTH ROW OF KEYS ARE ADDED
AS SHOWN DOTTED.
A-1

KEYBOARD LAYOUTS

‘0317ddNS §1 NOILdO LVHL 41 SH3ILOVHVHD $9 40 dNO¥9 ONOJ3IS 3HL SV

LIS HA0D TO08 ¥YOTOOHLNTI

¥V3ddy NIHL T1M AIHL 'S3A0D 3SIHL ONIYILNI Y0436 13S N3II8 SVH NO 9v1d FHL dI Wvd Z-Y
H8IWJAW L¥D IHL NI K1IAILOIJSIH | ONV O SNWNI0D OL Q3ILVISNVHL 38 1M L ONV 9 SNWNI0D % . S1V0 .—rwc
_ Jt 93 001493430 TI26H ‘N33O
*GL10L® 40 39NVH V NI 107d NVO QHVOBAIN 3IHL SA3IN NOILONNA 3IHL LNOHLIM .
3¥043¥3HL '03TIVLSNI MV SAIY TYNOILIO IHL SSIINN’ IQON LOTd IHL NI NIHM X3H 44 OL @4
L 2 L d
WIHL SNOISSVIN ONV QMVOSAIN 3HL WOMA 53000 X3H 48 OL @8 11V S1dIOOV TYNINYIL 3HL ;3LON ﬂkﬁOﬂF@J EO.-U. 1UCn6*)o ﬁOSfﬁ\/ ‘me
= 62| €22 el 1€ mu...o sl
24v383 10 sid (sld) sld ¢ 0 w
nv3ue o8+ N8
(134 7]
1074 NVHO [1F] [IF] bld «\E < . A% 0
€62 153 1L 9 1) 62]
107d LNIO4-X €14 €1 L o a
92 022 - K71 2l
107 LNIOd-A 214 24 214 0 0
' S ¥osuno
se2 16 .W L "
107d TVANINIHONI [IF] n4 4 ¢ + b] 3 12973 a ¢ + 23 o]
A=X
vee 812) ol
uve X -ox oi4 o4 ol dou : » z 0 o v
62 (13 3
wen x-A 64 64 64 " 6 (A b c2/k A 6 { avl o o .
-+
124 2e2 N L ®
YVE X-wx 94 [-F] 84 XE [}) X H I X [) 0 [¢] [¢] L]
12 1£2] [] - I :; (13 €2 z
WVEX TVLNININUONI L3 14 24 Vel 2 _n ! L) 9 <7) L . ILIHM 38 0 L
N+
2| oge 3t .) o 8¢ ez 9
uVE A-0A 94 94 94 [LE] 9 L A 4 74 n A T ® L] 100 o o 9
_ + + _
% 622 siz =
dve A-X [F] [F] [F] Ns4 S [¢] [¢]
rA1%J
e 822 2z 9l v
HYBA - wA vd 7 ¥4 L4 v $ L q 9+ » 0 0 o ¥
>
€52 122 12| - 19 [€
¥VE A TVLNINIHONI €4 €4 €4 ge4 € » s H] 619/% & F) € # MOTI3A 0 0
+
2%z 922] 8Ll 28l h Bl z
107d HOL1D3A X 24 24 24 Y24 2 1 ¥ [z N NEEID] 107d 0 0 0 2
»
1¥2] s22| 151 -) - T
107d HOLO3A OA 14 [F] 14 D14 | i [v 19/0 | I o o o
L S
¥O103A TVLNIWIHONI Lk vee 9l o ¥ 3 e
oA-0X 04 04 04 404 ") d w_u& 09/\ [] 30vds ¥oV18 JINN 0 [o 0 0
T+ 9. Ce+
—— 6l4-04 §14-04 cld-04 ¢o0L0Q iolLe —oLd 0o0L® —oLd ooL® ¢oLe —old oy v T v
L4IHS—1NOD| LiIHS 70H1NOD 1NOD * LJIHS % LdIHS LAIHS 7041NOD | TOHINOD
X
0 0 0 o 0 0 0 0 (2% s
2
0 0 0 0 0 o 0 0 sv H
H
o o o o o 0 0 0 ov
B | 0 0 o 0 0 0 0 o Lv
Q) v 6 L ? v o IVNIDIAYX3H
L
SA3M NOILONN4 TYNOILJO
z € * S L

.ﬁgcoahmu_ 1951ccrm-coc QLY Woass TYISY kvn 9}, :N3YY

CHARPCTER PLACEMENT GIVES LEFT§ BorToM
BOARDERS wiTHIN THE é€x8 MATRIX.

QYOM SNLVLS 3HL 40

WVIOVIA MOTd d4dOD ILNdNI

£-Y

1S3ND3Y ¥3IW0LsSND

SLig8 3HL 40 NOILINIA3a 3000 NO-MOTT04 ANY 1v 440 Q3INSVW LON SI 1ig
¥04 L'9'2 NOILO3S 33S %% 34IND3Y LON S300 300D SIHL % LV 3HL 41 AINO QA SI SIHL +
€9 0L 09 ¥O I€9 0L 09 HO o¢ mmWo_%v_kwwwomM_Wm mﬂ“_,mmomm%_m 97c w0918 I'€'9°2 Junold
3009 ¥07T09 V Ag 3000 ¥0T00 V A e 8 Losde B S3ITOW HOSHND ‘a
Q3MOTI04 ATTVWHON Q3IMOTTI04 ATTVWHON 9l 40 3NO
962 40 3NO
$3000 * NO % 440 oS3 JAON 195 300W NOILdO
T04LNOD Q1314 3ISUIAIY Q1314 ISHIATY 005 S oBLNGD S g A-X HOSHND 300W L07d
¥3HLO 1V 0f 3000 TO¥LNOD 62 3000 TONMLNOD € 3000 TOHLNOD 2 3000 TOY¥LNOD
SYILOVYHVHD SYILOVHYHD
VI03ds VI03ds
2€ aNZ 2€ LS|
$3002 $3002 $3009
T0¥LNOD 2€ ¥ILOVHYHO ¥3LOVHVHD
40 3NO 4 WI03ds 2¢ TI0SY b9
$3002 4 $3000
1ndNI 821 LSyl 1NdNi 821 ON2
40 3NO ANV 40 3INO ANV
$3000
1ndNI 962
40 ANO ANV

Delay Times are in Milliseconds

Mode Normal High Speed Option

Blind Cursor .278 .231
Character Store

Most Control

Codes .46 .40
Erase Line 1.45 1.2
Erase Page 16 (30)* 14.1 (27)*

Visible Cursor
Character Store

Left-Right ol .430

2X Char .59 .50
down @ 45° .75 .63
Insert 80

Characters 4.82 4.0
Delete 80 Characters 4.34 3.6

X,Y Point Plot .40, .63 .33, .53

XY Increment
2 points 1.2 1.0

100 Element
X Bar Graph 5.45 4.53

100 Element

Y Bar Graph 3.28 2.73
100 Element Vector 34 28.3
L]

*48L Delay time in ()

A-4

INPUT COMMANDS DELAYS

STANDARD INTECOLORp 8001

A7 Ag Ag Ay A3 Ap Al Ao
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

WITH BACKGROUND COLOR OPTION

o]
>
>

A

]
>
]
>

7 6 5 4 3 2 1 0
0] 0 0] 0] 0] 0] 0] 1
0] 0] 0] 0] 0] 0] 1 0]
0] 0] 0] 0] 0] 1 0] 0]
0] 0] 0] 0 1 0] 0] 0]
0] 0] 0 1 0] 0] 0] 0]
0 0] 1 0] 0] 0] 0 0]
0] 1 0] 0 0] 0] 0] 0]
1 0] 0] 0] 0] 0] 0] 0]

The above codes may be "ORed" for composite functions

A-5

CCI CODE ASSIGNMENTS

RED FOREGROUND
GREEN FOREGROUND
BLUE FOREGROUND
FOREGROUND BLINK
PLOT CHARACTER

RED FOREGROUND
GREEN FOREGROUND
BLUE FOREGROUND
RED BACKGROUND
GREEN BACKGROUND
BLUE BACKGROUND
FOREGROUND BLINK
FLOT CHARACTER

SINHWNDISSY NId ¢rf dNY IO

9-¥

*SISSVYH) 1008 @mo..oom._.z_ 3HL 40 ¥v3¥ 3HL WOoud
Q3IM3IA SV NMOHS 34V SY3IEBWNN L3INJ0S ANV Nid HOLO3INNOD LNNOW SISSVHI 1V ()

SHOLO3NNOD 310VLd303d

90009 'Nd 3SI - LN3VAIND3 ¥O t—202S02dNV - 404 SL13INO0S dWIHD
SYOLO3INNOD

0009 'Nd ISTI - LN3ITVAIND3 YO S— 102S02dNV - 9N7d ¥04d SNId dNIYD
9€00Il 'Nd 3ST - LN3TVAIND3 ¥O 886241 N3Q138 - Qy0J ¥3IMOd IV
260009 'Nd 3SI - LIN37VvAIND3 WO 1-802S02dWV — (9n7d NIds2)er
Ov0009 'Nd OSI - LN3TVAIND3 WO 1-202G02dNY — (1d3234 NId G2'VII)erie

. SHOLJ3INNOD SISSVHI dV3IY dOd4 S3T0VLd333d4 8 S9NTd INILVW (2)

‘9N7d LNNOW SISSVHO ‘NidG2*02€2-SH VI3 QYVANVLS H¥0d4 34V SHIGWNN Nid* 3A0W 3AI303Y
NI 378VIIVAY ATSNO3NVLIINWIS LON 38V dOO LN3YHND ANV VI3 J2€2-SY TVIH3S-Ir (1) { S3LON

TTVNOILJO 40071 LN3YYNd VW02

QYVOgAIN VI3 0J2g2-SY VIH3S
Y o _I G2
d 1
43IMO0d JV er r
0/I 02¢2SYH aNZ2
3sn4 d43mod

er

| MS

NOoO b w N

85

9.
10.
11.
12.
13.
14.
15.
l6.
17.
18.
19.
20.
21.
22.
23.
24.
25,

. AB

AA 1. AA
BA 2. BA
BB 3. BB
(071 4. 470 ohms to +12V
CB 5n
6.
7. AB
8.
RX Response Control 9. RX Response Control
RX Responce Control 10. RX Response Control
11. CLR+
TTL TX 12. TTL TX
13. TX Isolator input
14.
15.
l6.
17.
18. CLR-
19.
CD 20. 470 ohms to +12V
21. CLT+
22.
23.
23.
25. CLT-

An external jumper
is required from
pin 12 to pin 13.

A 2.2K ohm register
is required from
pin 3 to pin 4.

STANDARD TTY OPTIONAL

ElA RS2326 20MA Current Loop

Jl

SERIAL INPUT/OUTPUT

A-7
1/0 Connector

10.
21.
20.
19.
ioF
23.
11.
22.
14.
15.

16.

+17.
e
13-

25.
18.

IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
IN
ouT
ouT
ouT
ouT
ouT

~ouT

ouT
ouT
CPU

+5V
GND

oA
1A
2A
3a
aa
5A
6A
7A
4B
5B
6B
7B
oa
ia
2A
3A
4n
5A
6A
7a

Key

Data

Bits

1-4
Control
Shift

Key Data B5
Key Data B6

Not

Used

Key Trigger
RX ACK

Bell
-Key ACK

RESET

. SN -Key Inturr.

10.
Cle
24,

20.

19.

14.
3.
155

le.

17.
13.
24.
11.
22.
12.
23.
25.
18.

. OuT

.OuT

IN
IN
IN
IN
IN
IN
IN
IN

oc

1c

2C

3C

4c

5C

6C
7C

oc

Ic

2C

3c

4ic

EC

(6]

7c

RESET
RS232 TX
TTL TX
RS232 RX

ouT
OUT.

ouT
ouT
ouT
ouT
CPU
2nd
2nd
2nd
+12V
-12v
+5V
GND
SN - EXT Inturr.

J3

OPTIONAL:

PARALLEL INPUT/OUTPUT
AND 2nd PS232C

APPENDIX B

Sl
6€2
(o]

OAV OXV 1AW 11XV
HOLD3A A-X
IVLN3INIYHONI

Sl
(o1}
obe

66|
(o]

3NAVA XV X
HdVYd9 ¥va X
FA
(8-)
ave

2

161
(o]

3NTVA oA
. 40L123A
14l
(S1-)
144

L

cwa ole

3NTIVA A
HdVY9 d¥vE X
9
(L-)
62

14l

6G2
[o]

3NAVA oX
H0L1923A
£l
(p1-)
2ve

9

6G|
(o]

3NTVA oX
HdVd9 ¥va X
S
(9-)
062

SNOILONNA HAOW LOId

(3NVS) 21

6£2
(o]

2o 2w v Ixo
HdV49 HvE
IVINIWIHONI A
2
(€1-)

£v2

(3NVS) v

6€2
(o]

2w oxv Iav Ixv
107d A-X
IWINIWIHONI
b
(s-)
152

-9

Ol

ﬁ_w_u ool

3NTIVA XVN A
HdVY9 ¥vEe A
I
(21-)
vve

2
161) 00!
(')

3NVA A
107d LNIOd A-X
£
(-)

262

6G1
(o]

3INIVA X
HdVYd9 ¥va A
Ol
(11-)

Sbe

€

66|
(o]

3NIVA X
107d LNIOd A-X
2
(g-)
£62

2= 1407d S13S

8 3000 T0HLNOD
@ d0
300N 101d

Ol

161 OOl
ho

3NVA oA
HdVY9 d¥va A
6
(ol-)
9v2

(3NVS) |

14°14
(o]

H310VHVHO 107d
107d ¥31JVHVHO
|
(2-)

1 4°1

(3NVS) 8 =0L 1407d IONVHD
6£2 = oL
) = WOM4 39NVY
4% 2x I Ix = QYOM LX3N
Hdv¥9 dve
VANINIHONI X = NOILONNA
8 = 01 1407d S13S
(6-) LNIWITdWOD S,0ML
162 - = 3000 ANVYNIG
VIN = 0L 1407d 39NVHD
V/N =0L
V/N = WOMd 3ONVY
VN = QMOM LX3N
3dv2s3 107d = NOILONNA
0 = 0L 1407d S13S
{1-) INIW3TdNOD S,0M1
ss2 = 3000 ANVNIG
[[r f

01 HEX 10 HEX

00000001 00010000
02 HEX 20 HEX

0000O0O01O 0n010000O00O0
04 HEX 40 HEX

00000100 01 000000O0
08 HEX 80 HEX

00001000O0 10000000O0

B~2

Note: Each of the above codes may be "ORed" for composite
symbols.

PLOT MODE CHARACTERS AND CODES

Ty

0,0

B-3

X POINT PLOT AND Y POINT PLOT

AX{ AY; (1010)

Start

0,0 Movement and Coding Example

(0010) 2

AY=+1 (1010) o

AX= 0
AX=-1 AX=+1 1001
AY=-1 Ay=-q (10011
(0101)¢ (0001)

Movement Possibilities

B-4

XY INCREMENTAL POINT PLOT MOVEMENTS

0,0

Xl Xn X9

Y BAR GRAPH

X AND Y BAR GRAPH MODES

+1

X=+1

:+l
—

ANX3 AY3 AX4

X=+1Y

Y Incremental Bar Graph

Start AX3 AY3 X4

-1 X=+1,Y=-1 1

0,0 X,

+1r X==1,Y=-1
Fl X=+1,Y=-1

X=+1,Y=-1

X Incremental Bar Graph

Appendix B6

AY?2

HY4

ANY4

X INCREMENTAL BAR GRAPH, Y INCREMENTAL BAR GRAPH

1

X2,Y2
y2 2 This vector drawn by
send birary sending x7,y,
Y0
1 Line drawn from xq,y;
to XO,yO at XO)YO with
X1,y] now equal to old
XO;YO
71
0,0

B-7

XO YO Vector Plot Mode

APPENDIX C

3.

INTRODU

Appendix C

TMS 5501 Multifunction Input/Output Controller
TABLE OF CONTENTS

CTION

1.1 Description s
1.2 Summary of Operatio

OPERATIONAL AND FUNCTIONAL DESCRIPTION

2.1 Interface Signals

2.2 TMS
2.2
2.2.2
2.2.3
2.24
2.25
2.2.6
2.2.7
2.2.8
2.2.9
2.2.1

TMS 5501

3.1 Abso
3.2 Reco

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

5501 Commands
Read Receiver Buffer
Read External Input Lines
Read Interrupt Address
Read TMS 5501 Status
Issue Discrete Commands
Load Rate Register
Load Transmitter Buffer
Load Output Port
Load Mask Register

0 Load Timer n

ELECTRICAL AND MECHANICAL SPECIFICATIONS

lute Maximum Ratings
mmended Operating Conditions

LIST OF ILLUSTRATIONS
TMS 5501 Block Diagram

Data Bus Assignments for TMS 5501 Status
Discrete Command Format i W
Data Bus Assignments for Rate Commands
Read Cycle Timing

Write Cycle Timing

Sensor/Interrupt Timing

Information contained in this publigation is believed to be accurate
and reliable. However, responsibility is assumed neither for its use
nor for any infringement of patents or rights of others that may
result from its use. No license is granted by implication or otherwise

under any patent or patent right of Texas Instruments or others.

Copyright © 1975

Texas Instruments Incorporated

C-1

12
12

10
1
14
15
15

1.1

TMS 5501 MULTIFUNCTION INPUT/OUTPUT CONTROLLER

INTRODUCTION

DESCRIPTION

The TMS 5501 is a multifunction input/output circuit for use with T1's TMS 8080 CPU. It is fabricated with the same
N-channel silicon-gate process as the TMS 8080 and has compatible timing, signal levels, and power supply

requirements. The TMS 5501 provides a TMS 8080 microprocessor system with an asynchronous communications
interface, data |/0O buffers, interrupt control logic, and interval timers.

SYNC CE X

INT
CONTROL
A0 A3
4

oom?

FIGURE 1—-TMS 5501 BLOCK DIAGRAM

The 1/0 section of the TMS 5501 contains an eight-bit parallel input port and a separate eight-bit paraliel output port
with storage register. Five programmable interval timers provide time intervals from 64 us to 16.32 ms.

The interrupt system allows the processor to effectively communicate with the interval timers, external signals, and the
communications interface by providing TMS 8080-compatible interrupt logic with masking capability.

Data transfers between the TMS 5501 and the CPU are carried by the data bus and controlled by the interrupt, chip
enable, sync, and address lines. The TMS 8080 uses four of its memory-address lines to select one of 14 commands to
which the TMS 5501 will respond. These commands allow the CPU to:

read the receiver buffer

read the input port

read the interrupt address
- read TMS 5501 status

issue discrete commands

load baud rate register

load the transmitter buffer

load the output port

load the mask register

load an interval timer

1.2

The commands are generated by executing memory referencing instructions such as MOV (register to memory) with the
memory address being the TMS 5501 command. This provides a high degree of flexibility for 1/O operations.by letting
the systems programmer use a variety of instructions.

SUMMARY OF OPERATION
Addressing the TMS 5501

A convenient method for addressing the TMS 5501 is to tie the chip enable input to the highest order address line of
the CPU’s 16-bit address bus and the four TMS 5501 address inputs to the four lowest order bits of the bus. This, of
course, limits the system to 32,768 words of memory but in many applications the full 65,536 word memory
addressing capability of the TMS 8080 is not required.

Communications Functions

The communications section of the TMS 5501 is an asynchronous transmitter and receiver for serial communications
and provides the following functions:

Programmable baud rate — A CPU command selects a baud rate of 110, 150, 300, 1200, 2400, 4800, or 9600 baud.

Incoming character detection — The receiver detects the start and stop bits of an incoming character and places the
character in the receive buffer.

Character transmission — The transmitter generates start and stop bits for a character received from the CPU and
shifts it out.

Status and command signals — Via the data bus, the TMS 5501 signals the status of: framing error and overrun error
flags; data in the receiver and transmitter buffers; start and data bit detectors; and end-of-transmission (break) signals
from external equipment. It also issues break signals to external equipment.

Data Interface

The TMS 5501 moves data between the CPU and external devices through its internal data bus, input port, and output
port. When data is present on the bus that is to be sent to an external device, a Load Output Port (LOP) command from
the CPU puts the data on the X0 pins of the TMS 5501 by latching it in the output port. The data remains in the port
until another LOP command is received. When the CPU requires data that is present on the External Input (XI) lines, it
issues a command that gates the data onto the internal data bus of the TMS 5501 and consequently onto the CPU’s
data bus at the correct time during the CPU cycles.

Interval Timers

To start a countdown by any of the five interval timers, the program selects the particular timer by an address to the
TMS 5501 and loads the required interval into the timer via the data bus. Loading the timer activates it and it counts
down in increments of 64 microseconds. The 8-bit counters provide intervals that vary in duration from 64 to 16,320
microseconds. Much longer intervals can be generated by cascading the timers through software. When a timer reaches
zero, it generates an interrupt that typically will be used to point to a subroutine that performs a servicing function
such as polling a peripheral or scanning a keyboard. Loading an interval value of zero causes an immediate interrupt. A
new value loaded while the interval timer is counting overrides the previous value and the interval timer starts counting
down the new interval. When an interval timer reaches zero it remains inactive until a new interval is loaded.

c-3

1.3

Servicing Interrupts

The TMS 5501 provides a TMS 8080 system with several interrupt control functions by receiving external interrupt
signals, generating interrupt signals, masking out undersired interrupts, establishing the priority of interrupts, and
generating RST instructions for the TMS 8080. An external interrupt is received on pin 22, SENS. An additional
external interrupt can be received on pin 32, X17, if selected by a discrete command from the TMS 8080 (See
Figure 4). The TMS 5501 generates an interrupt when any of the five interval timers count to zero. Interrupts are also
generated when the receiver buffer is loaded and when the transmitter buffer is empty.

When an interrupt signal is received by the interrupt register from a particular source, a corresponding bit is set and
gated to the mask register. A pattern will have previously been set in the mask register by a load-mask-register command
from the TMS 8080. This pattern determines which interrupts will pass through to the priority logic. The priority logic
allows an interrupt to generate an RST instruction to the TMS 8080 only if there is no higher priority interrupt that
has not been accepted by the TMS 8080. The TMS 5501 prioritizes interrupts in the order shown below:

1st — Interval Timer =1

2nd — Interval Timer =2

3rd — External Sensor

4th — Interval Timer #3

5th — Receiver Buffer Loaded

6th — Transmitter Buffer Emptied

7th — Interval Timer #4

8th — Interval Timer #5 or an External Input (XI 7)

The highest priority interrupt passes through to the interrupt address logic, which generates the RST instruction to be
read by the TMS 8080. See Table 3 for relationship of interrupt sources to RST instructions and Figures 6 and 8 for
timing relationships.

The TMS 5501 provides two methods of servicing interrupts; an interrupt-driven system or a polled-interrupt system. In
an interrupt-driven system, the INT signal of the TMS 5501 is tied to the INT input of the TMS 8080. The sequence of
events will be: (1) The TMS 5501 receives (or generates) an interrupt signal and readies the appropriate RST
instruction. (2) The TMS 5501 INT output, tied to the TMS 8080 INT input, goes high signaling the TMS 8080 that an
interrupt has occured. (3) If the TMS 8080 is enabled to accept interrupts, it sets the INTA (interrupt acknowledge)
status bit high at SYNC time of the next machine cycle. (4) If the TMS 5501 has previously received an interrupt-
acknowledge-enable command from the CPU (see Bit 3, Paragraph 2.2.5), the RST instruction is transferred to the data
bus.

In a polled-interrupt system, INT is not used and the sequence of events will be: (1) The TMS 5501 receives (or
generates) an interrupt and readies the RST instruction. (2) The TMS 5501 interrupt-pending status bit (see Bit 5,
Paragraph 2.2.4) is set high (the interrupt-pending status bit and the INT output go high simultaneously). (3) At the
prescribed time, the TMS 8080 polls the TMS 5501 to see if an interrupt has occurred by issuing a read-
TMS 5501-status command and reading the interrupt-pending bit. (4) If the bit is high, the TMS 8080 will then issue a
read-interrupt-address command, which causes the TMS 5501 to transfer the RST instruction to the data bus as data for
the instruction being executed by the TMS 8080.

APPLICATIONS
Communications Terminals

The functions of the TMS 5501 make it particularly useful in TMS 8080-based communications terminals and generally
applicable in systems requiring periodic or random servicing of interrupts, generation of control signals to external
devices, buffering of data, and transmission and reception of asynchronous serial data. As an example, a system
configuration such as shown in Figure 2 can function as the controller for a terminal that governs employee entrance
into a plant or security areas within a plant. Each terminal is identified by a central computer through ID switches. The
central system supplies each terminal’s RAM with up to 16 employee access categories applicable to that terminal.
These categories are compared with an employee’s badge character when he inserts his badge into the badge sensor. If a

match is not found, a reject light will be activated. If a match is found, the terminal will transmit the employee’s badge
number and access category to the central system, and a door unlock solenoid will be activated for 4 seconds. The
central computer then may take the transmitted information and record it along with time and date of access.

The TMS 4700 is a 1024 x 8 ROM that contains the system program, and the TMS 4036 is a 64 x 8 RAM that serves as
the stack for the TMS 8080 and storage for the access category information. TTL circuits control chip-enable information
carried by the address bus. Signals from the CPU gate the address bits from the ROM, the RAM, or the TMS 5501 onto
the data bus at the correct time in the CPU cycle. The clock generator consists of four TTL circuits along with a crystal,
needed to maintain accurate serial data assembly and disassembly with the central computer.

The TMS 5501 handles the asynchronous serial communication between the TMS 8080 and the central system and
gates data from the badge reader onto the data bus. It also gates control and status data from the TMS 8080 to the door
lock and badge reader and controls the time that the door lock remains open. The TMS 5501 signals the TMS 8080
when the badge reader or the communication lines nced service. The functions that the TMS 5501 is to perform are
selected by an address from the TMS 8080 with the highest order address line tied to the TMS 5501 chip enable input
and the four lowest order lines tied to the address inputs.

2. OPERATIONAL AND FUNCTIONAL DESCRIPTION
This detailed description of the TMS 5501 consists of:
INTERFACE SIGNALS — a definition of each of the circuit’s external connections
COMMANDS — the address required to select each of the TMS 5501 commands and a description of the response to
the command.
21 INTERFACE SIGNALS
The TMS 5501 communicates with the TMS 8080 via four address lines: a chip enable line, an eight-bit bidirectional
data bus, an interrupt line, and a sync line. It communicates with system components other than the CPU via eight
external inputs, eight external outputs, a serial receiver input, a serial transmitter output, and an external sensor input.
Table 1 defines the TMS 5501 pin assignments and describes the function of each pin.
TABLE 1
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS
SIGNATURE PIN DESCRIPTION
INPUTS
CE 18 Chip enable—When CE is low, the TMS 5501 address decoding is inhibited, which prevents
execution of any of the TMS 5501 commands.

A3 17 Address bus—A3 through AOare the lines that are addressed by the TMS 8080 to select a particular

A2 16 TMS 5501 function.

A1l 15

A0 14
SYNC 19 Synchronizing signal—TheSYNCsignal is issued by the TMS 8080 and indicates the beginning of a

machine cycle and availability of machine status. When the SYNC signal is active (high), the
TMS 5501 will monitor the data bus bits DO (interrupt acknowledge) and D1 (WO, data output
function).

Receiver serial data inputline—RCV must be held in the inactive (high) state when not receiving
data. A transition from high to low will activate the receive circuitry.

el
<
o

SIGNATURE PIN

X1 0
X1
X112
X3
X1 4
X1'5
X6
X117

SENS

X0 0
X0 1
X0 2
X0 3
X0 4
X0 5
x0 6
X0 7
XMT

DO
D1
D2
D3
D4
D5
D6
D7

INT

Vss
VBB
vVce
VDD
P1
$2

39
38
37
36
35
34
33
32

22

24
25
26
27
28
29
30
31

40

W N =B

20
21

TABLE 1 (continued)
TMS 5501 PIN ASSIGNMENTS AND FUNCTIONS

DESCRIPTION
INPUTS
External inputs—These eight external inputs are gated to the data bus when the read-external-inputs
function is addressed. External input n is gated to data bus bit n without conversion.

External interrupt sensing — A transition from low to high at SENS sets a bit in the interrupt
register, which, if enabled, generates an interrupt to the TMS 8080.

OUTPUTS

External outputs—These eight external outputs are driven by the complement of the output
register; i.e., if output register bit n is loaded with a high (low) from data bus bit n by a load-
output register command, the external output n will be alow (high). The external outputs change
only when a load-output-register function is addressed.

Transmitter serial data output line—This line remains high when the TMS 5501 is not transmitting.

DATA BUS INPUT/OUTPUT

Data bus — Data transfers between the TMS 5501 and the TMS 8080 are made via the 8-bit
bidirectional data bus. DO is the LSB. D7 is the MSB.

Interrupt—When active (high), the INT output indicates that at least one of the interrupt conditions
has occurred and that its corresponding mask-register bit is set.

POWER AND CLOCKS

Ground reference

Supply voltage (=5 V nominal)
Supply voltage (5 V nominal)
Supply voltage (12 V nominal)
Phase 1 clock

Phase 2 clock

Cc-7

22 TMS 5501 COMMANDS

The TMS 5501 operates as memory device for the TMS 8080. Functions are initiated via the TMS 8080 address bus and
the TMS 5501 address inputs. Address decoding to determine the command function being issued is defined in Table 2.

TABLE 2
COMMAND ADDRESS DECODING
When Chip Enable Is High

A3 A2 A1 A0 COMMAND FUNCTION PARAGRAPH
L L L L Readreceiver buffer RBn ~ Dn 2.21
L L L H Read external inputs XIn = Dn 2.2.2
L L H L Read interrupt address RST — Dn 2.2.3
L L H H Read TMS 5501 status (Status) = Dn 224
L H L L Issue discrete commands See Figure 4 225
L H L H Load rate register See Figure 4 226
L H H L Load transmitter buffer Dn— TBn 2.2.7
L H H H Loadoutputport Dn- XOn 2.2.8
H L L L Load mask register Dn - MRn 229
H L L H Load interval timer 1 Dn— Timer 1 2.2.10
H L H L Load interval timer 2 Dn— Timer 2 2.2.10
H L H H Load interval timer 3 Dn = Timer 3 2.2.10
H H L L Loadinterval timer 4 Dn - Timer 4 2.2.10
H H L H Load interval timer 5 Dn - Timer 5 2.2.10
H H H L No function

H H H H No function

RBn Receiver buffer bit n

Dn Databus I/0O terminal n

XIn E xternal input terminal n

RST 11 (1A5) (1A7) (1AG) 111 (see Table 3)
TBn Transmit buffer bit n

XOn Output register bit n

MRnN Mask register bitn

TABLE 3
RST INSTRUCTIONS

DATATEUSIENY INTERRUPT CAUSED BY

01 2 3 45 6 7

H HH L L L H H Interval Timer 1

H HHH L L H H Interval Timer 2

H HH L H L H H External Sensor

H HHHH L H HInterval Timer 3

H H H L L H H H Receiver Buffer

H H H H L H H H Transmitter Buffer

H HH L H H H H Interval Timer 4

H HHHH H H H Interval Timer 5 or X17

221

2.2.2

223

2.2.4

The following paragraphs define the functions of the TMS 5501 commands.

Read receiver buffer
Addressing the read-receiver-buffer function causes the receiver buffer contents to be transferred to the TMS 8080 and
clears the receiver-buffer-loaded flag.

Read external input lines
Addressing the read-external-inputs function transfers the states of the eight external input lines to the TMS 8080.

Read interrupt address
Addressing the read interrupt address function transfers the current highest priority interrupt address onto the data bus
asread data. After the read operation is completed, the corresponding bit in the interrupt register is reset.

|f the read-interrupt-address function is addressed when there is no interrupt pending, a false interrupt address will be
read. TMS 5501 status function should be addressed in order to determine whether or not an interrupt condition is
pending.

Read TMS 5501 status

Addressing the read-TMS 550 1-status function gates the various status conditions of the TMS 5501 onto the data bus.
The status conditions, available as indicated in Figure 3, are described in the following paragraphs.

BIT: 7 6 5 4 3 2 1 0
START | FULL INTRPT | XMIT RCV SERIAL|OVERRUN | FRAME
BIT BIT PENDING|BUFFER | BUFFER | RCVD |[ERROR ERROR
DETECT| DETECT EMPTY LOADED

FIGURE 3—DATA BUS ASSIGNMENTS FOR TMS 5501 STATUS

Bit O, framing error

A high in bit O indicates that a framing error was detected on the last character received (either one or both stop bits
were in error). The framing error flag is updated at the end of each character. Bit O of the TMS 5501 status will remain
high until the next valid character is received.

Bit 1, overrun error
A high in bit 1 indicates that a new character was loaded into the receiver buffer before a previous character was read
out. The overrun error flag is cleared each time the read-1/O-status function is addressed or a reset command is issued.

Bit 2, serial received data

Bit 2 monitors the receiver serial data input line. This line is provided as a status input for use in detecting a break and
for test purposes. Bit 2 is normally high when no data is being received.

Bit 3, receiver buffer loaded

A high in bit 3 indiciates that the receiver buffer is loaded with a new character. The receiver-buffer-loaded flag remains
high until the read-receiver-buffer function is addressed (at which time the flag is cleared). The reset function also clears
this flag.

Cc-9

2.25

Bit 4, transmitter butfer empty

A high in bit 4 indicates that the transmitter buffer register is empty and ready to accept a character. Note, however,
that the serial transmitter register may be in the process of shifting out a character. The reset function sets the
transmitter-buffer-empty flag high.

Bit 5, interrupt pending
A high in bit 5 indicates that one or more of the interrupt conditions has occured and the corresponding interrupt is
enabled. This bit is the status of the interrupt signal INT.

Bit 6, full bit detected
A high in bit 6 indicates that the first data bit of a receive-data character has been detected. This bit remains high until
the entire character has been received or until a reset is issued and is provided for test purposes.

Bit 7, start bit detected
A high in bit 7 indicates that the start bit of an incoming data character has been detected. This bit remains high until

the entire character has been received or until a reset is issued and is provided for test purposes.

Issue discrete commands

Addressing the discrete command function causes the TMS 5501 to interpret the data bus information according to the
following descriptions. See Figure 4 for the discrete command format. Bits 1 through 5 are latched until a different

discrete command is received.
NORMALLY LOW

BIT: 7 6 5 4 3 2 1 0
NOT NOT TEST TEST INT. INT. 7
ACK.) BREAK | RESET
USED USED BIT BIT ENABLE SELECT
H: Enables interrupt acknowledge BH: Reset
L: Inhibits interrupt acknowledge L L: No action
H: L Sets XMT output low
L: Selects interval timer 5 L: H Sets XMT outputhigh

FIGURE 4—DISCRETE COMMAND FORMAT
Bit O, reset
A high in bit O will cause the following:

1) The receiver buffer and register are cleared to the search mode including the receiver-buffer-loaded flag, the
start-bit-detected flag, the full-bit-detected flag, and the overrun-error flag. The receiver buffer is not cleared and
will contain the last character received.

2) The transmitter data output is set high (marking). The transmitter-buffer-empty flag is set high indicating that the
transmitter buffer is ready to accept a character from the TMS 8080.

3) The interrupt register is cleared except for the bit corresponding to the transmitter buffer interrupt, which is set
high.

4) The interval timers are inhibited.

A low in bit O causes no ac/tion. The reset function has no affect on the output port, the external inputs, interrupt
acknowledge enable, the mask register, the rate register, the transmitter register, or the transmitter buffer.

C-10

Bit 1, break
A low in bit 1 causes the transmitter data output to be reset low (spacing).

If bit 0 and bit 1 are both high, the reset function will override.

Bit 2, interrupt 7 select
Interrupt 7 may be generated either by a low to high transition of external input 7 or by interval timer 5.

A high in bit 2 selects the interrupt 7 source to be the transition of external input 7. A low in bit 2 selects the
interrupt 7 source to be interval timer 5.

Bit 3, interrupt acknowledge enable
The TMS 5501 decodes data bus (CPU status) bit 0 at SYNC of each machine cycle to determine if an interrupt

acknowledge is being issued.

A high in bit 3 enables the TMS 5501 to accept the interrupt acknowledge decode. A low in bit 3 causes the TMS 5501
to ignore the interrupt acknowledge decode.

Bit 4 and bit 5 are used only during testing of the TMS 5501. For correct system operation both bits must be kept low.
Bit 6 and bit 7 are not used and can assume any value.
2.2.6 Load rate register

Addressing the load-rate-register function causes the TMS 5501 to load the rate register from the data bus and interpret
the data bits (See Figure 5) as follows.

BIT: 7 6 5 4 3 2 1 0
STOP 9600 4800 2400 1200 300 150 110
BIT(s) baud baud baud baud baud baud baud
One stop bit

L: Two stop bits

FIGURE 5—DATA BUS ASSIGNMENTS FOR RATE COMMANDS
Bits O through 6, rate select

The rate select bits (bits O through 6) are mutually exclusive, i.e., only one bit may be high. A high in bits 0 through 6
will select the baud rate for both the transmitter and receiver circuitry as defined below and in Figure 5:

Bit 0 110 baud
Bit 1 150 baud
Bit 2 300 baud
Bit 3 1200 baud
Bit4 2400 baud
Bit5 4800 baud
Bit6 9600 baud

If more than one bit is high, the highest rate indicated will result. If bits O through 6 are all low, both the receiver and
the transmitter circuitry will be inhibited.

Bit 7, stop bits
Bit 7 determines whether one or two stop bits are to be used by both the transmitter and receiver circuitry. A high in
bit 7 selects one stop bit. A low in bit 7 selects two stop bits.

2.2.7 Load transmitter buffer

Addressing the load-transmitter-buffer function transfers the state of the data bus into the transmitter buffer.

2.2.8 Load output port

Addressing the load-output-port function transfers the state of the data bus into the output port. The data is latched
and remains on XO 0 through XO 7 as the complement of the data bus until new data is loaded.

2.2.9 Load mask register

Addressing the load-mask-register function loads the contents of the data bus into the mask register. A high in data bus
bit n enables interrupt n. A low inhibits the corresponding interrupt.

2.2.10 Load timer n

3.1

Addressing the load-timer-n function loads the contents of the data bus into the appropriate interval timer. Time
intervals of from 64 us (data bus = LLLLLLLH) to 16,320 us (data bus HHHHHHHH) are counted in 64-us, steps.
When the count of interval timer n reaches O, the bit in the interrupt register that corresponds to timer n is set and
an interrupt is generated. Loading a'l lows causes an interrupt immediately.

TMS 5501 ELECTRICAL AND MECHANICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, V¢ (see Note 1) —-03Vto20V
Supply voltage, Vpp (see Note 1 —0.3Vto20V
Supply voltage, Vgg (see Note 1) —0.3Vto20V
All input and output voltages (see Note 1) —-0.3V1to 20V
Continuous power dissipation 1.1W
Operating free-air temperature range 0°C to 70°C
Storage temperature range —65°C to 150°C

*Stresses beyond those listed under '“Absolute Maximum Ratings’’ may cause permanent damage to the device. This is a stress rating only

and functional operation of the device at these or any other conditions beyond those indicated in the ‘‘Recommended Operating
Conditions’’ section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the normally most negative supplyvoltage, Vgg (substrate).

Throughout the remainder of this data sheet, voltage values are with respect to Vgg unless otherwise noted.

3.2 RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX [UNIT
Supply voltage, Vgg -475 -5 -525| V
Supply voltage, Ve 4.75 5) 525] V
Supply voltage, Vpp 1.4 12 126 | V
Supply voltage, Vgg 0 \Y
High-level input voltage, V| (all inputs except clocks) 33 Veetl| V
High-level clock input voltage, V|H (@) Vpp—1 Vpp*tl V
Low-level input voltage, V| (all inputs except clocks) (see Note 2) -1 08 V
Low-level clock input voltage, V|| () (see Note 2) -1 06| V
: Operating free-air temperature, T p . 0 70 | °c

NOTE 2: Thealgebraic convention where the most negative limit is designated asminimum isused inthis specification for logic voltage levels onty.

Cc-12

35 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED
OPERATING CONDITIONS (SEE FIGURES 6 AND 7)

PARAMETER TESTCONDITIONS [MIN MAX [UNIT
tp Data bus output enable time 200
ZX C_ = 100 pF, ne
tpxz Data bus output disable time to high-impedance state - 13k 180 ns
Sl Q2
tpD External data output propagation delay tume from 2 L 200 | ns

3V

RL=1.3k

TMS 5501
OUTPUT

TCL =100 pF

CL includes probe and jig capacitance

LOAD CIRCUIT

teles) — e (o)
| y
twl(o1) > tp) = re— I l (¢ L2)

-7

[a]]

: twi((2) |
®2 tg(¢r H-6:2) td(201)

re—

CHIP
ENABLE

SYNC

Hi-Z2

tsu(da)- th(da)
D1 Hi-Z

D2-D7 L

tsu(ad) je th(ad)
AD-A3

—

tsu(X1) le- th{x1)
EXTERNAL

INPUTS

NOTE: For 1 or 52 inputs, high and low timing pointsare 90% and 10% of V(). Allother timing pointsare the 50% level.

FIGURE 6—READ CYCLE TIMING

@1

®2
tsu(CE) +} th(CE) .
CHIP
ENABLE

SYNC | |

DO, D1

D2-D7

AO0-A3 WRITE FUNCTION ADDRESS

EXTERNAL
OUTPUTS

NOTE: For ¢1 and ¢2 inputs, high and low timing points are 90% and 10% of V|H(@). All other timing points are the 50% level.

FIGURE 7-WRITE CYCLE TIMING

be— ti(sens H)—ohe—tw(sens L)~
SENSOR
| N A
INTERRUPT

RST INSTRUCTION
ON DATA BUS
(See Note 1)

NOTES: 1. The RST instruction occurs during the output data valid time of tne read cycle.
2. All timing points are 50% of V.

FIGURE 8—SENSOR/INTERRUPT TIMING

PD—bo—ad

be— td(rst-int) —o

APPENDIX D

Appendix D

TMS 8080 Microprocessor

TABLE OF CONTENTS

ARCHITECTURE

1.1
1.2
1.3
1.4
1.5
1.6
1.7

Introduction

The Stack

Registers

The Arithmetic Unlt
Status and Control
1/0 Operations
Instruction Timing

TMS 8080 INSTRUCTION SET

2.1
2.2

23

Instruction Formats

Instruction Set Description

2.2.1 Instruction Symbols :

2.2.2 Accumulator Group Instructions

2.2.3 Input/Output Instructions

2.2.4 Machine Instructions : 2 B
2.2.5 Program Counter and Stack Control Instrucnons
2.2.6 Register Group Instructions

Instruction Set Opcodes Alphabetically Llsted

TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1
3%
3.3
3.4
35
3.6
3.7

Absolute Maximum Ratings
Recommended Operating Conditions
Electrical Characteristics

Timing Requirements

Switching Characteristics

Terminal Assignments

Mechanical Data

LIST OF ILLUSTRATIONS

Figure 1 TMS 8080 Functional Block Diagram
Figure 2 Voltage Waveforms

Information contained in this publication is believed to be accurate
and reliable. However, responsibility is assumed neither for its use
nor for any infringement of patents or rights of others that may
result from its use. No license is granted by implication or otherwise

under any patent or patent right of Texas Instruments or others.

Copyright © 1975

Texas tnstruments Incorporated

W WWWNNN

O 00NN

11
12

17
17
17
18
18
20
20

1.1

1.2

1.3

TMS 8080 MICROPROCESSOR

ARCHITECTURE
INTRODUCTION

The TMS 8080 is an 8-bit parallel central processing unit (CPU) fabricated on a single chip using a high-speed N-channel
silicon-gate process. (See Figure 1). A complete microcomputer system with a 2-us instruction cycle can be formed by
interfacing this circuit with any appropriate memory. Separate 8-bit data and 16-bit address buses simplify the interface
and allow direct addressing of 65,536 bytes of memory. Up to 256 input and 256 output ports are also provided with
direct addressing. Control signals are brought directly out of the processor and all signals, excluding clocks, are TTL
compatible.

THE STACK

The TMS 8080 incorporates a stack architecture in which a portion of external memory is used as a pushdown stack for
storing data from working registers and internal machine status. A 16-bit stack pointer (SP) is provided to facilitate
stack location in the memory and to allow almost unlimited interrupt handling capability. The CALL and RST (restart)
instructions use the SP to store the program counter (PC) into the stack. The RET (return) instruction uses the SP to
acquire the previous PC value. Additional instructions allow data from registers and flags to be saved in the stack.

REGISTERS

The TMS 8080 has three categories of registers: general registers, program control registers, and internal registers. The
general registers and program control registers are listed in Table 1. The internal registers are not accessible by the
programmer. They include the instruction register, which holds the present instruction, and several temporary storage
registers to hold internal data or latch input 2:nd output addresses and data.

INCREMENTER
DECREMENTER

FIGURE 1-TMS 8080 FUNCTIONAL BLOCK DIAGRAM

14

1.5

1.6

1.7

THE ARITHMETIC UNIT

Arithmetic operations are performed in an 8-bit parallel arithmetic unit that has both binary and decimal capabilities.
Four testable internal flag bits are provided to facilitate program control, and a fifth flag is used for decimal
corrections. Table 2 defines these flags and their operation. Decimal corrections are performed with the DAA
instruction. The DAA corrects the result of binary arithmetic operation on BCD data as shown in Table 3.

STATUS AND CONTROL

Two types of status are provided by the TMS8080. Certain status is indicated by dedicated control lines. Additional
status is transmitted on the data bus during the beginning of each instruction cycle (machine cycle). Table 4 indicates
the pin functions of the TMS8080. Table 5 defines the status information that is presented during the beginnirng of each
machine cycle (SYNC time) on the data bus.

/O OPERATIONS

Input/output operations (1/0) are performed using the IN and OUT instructions. The second byte of these instructions
indicates the device address (256 device addresses). When an IN instruction is executed, the input device address
appears in duplicate on A7 through A0 and A15 through A8, along with WO and INP status on the data bus. The
addressed input device then puts its input data on the data bus for entry into the accumulator. When an OUT
instruction is executed, the same operation occurs except that the data bus has OUT status and then has output data.

Direct memory access channels (DMA) can be OR-tied directly with the data and address buses through the use of the
HOLD and HLDA (hold acknowledge) controls. When a HOLD request is accepted by the CPU, HLDA goes high, the
address and data lines are forced to a high-impedance or ‘‘floating’”’ condition, and the CPU stops until the HOLD
request is removed.

Interfacing with different speed memories is easily accomplished by use of the WAIT and READY pins. During each
machine cycle, the CPU polls the READY input and enters a wait condition until the READY line becomes true. When
the WAIT output pin is high, it indicates that the CPU has entered the wait state.

Designing interrupt driven systems is simplified through the use of vectored interrupts. At the end of each instruction,
the CPU polls the INT input to determine if an interrupt request is being made. This action does not occur if the CPU is in
the HOLD state or if interrupts are disabled. The INTE output indicates if the interrupt logic is enabled (INTE is high).
When a request is honored, the INTA status bit becomes high, and an RST instruction may be inserted to force the CPU
to jump to one of eight possible locations. Enabling or disabling interrupts is controlled by special instructions (El or
DI). The interrupt input is automatically disabled when an interrupt request is accepted or when a RESET signal is
received.

INSTRUCTION TIMING

The execution time of the instructions varies depending on the operation required and the number of memory
references needed. A machine cycle is defined to be a memory referencing operation and is either 3, 4, or 5 state times
long. A state time (designated S) is a full cycle of clocks ¢1 and ¢2. (NOTE: The exception to this rule is the DAD
instruction, which consists of 1 memory reference in 10 state times). The first machine cycle (designated M1) is either 4
or 5 state times long and is the ““instruction fetch’’ cycle with the program counter appearing on the address bus. The
CPU then continues with as many M cycles as necessary to complete the execution of the instruction (up to a
maximum of 5). Thus the instruction execution time varies from 4 state times (several including ADDr) to 18 (XTHL).
The WAIT or HOLD conditions may affect the execution time since they can be used to control the machine (for
example to ‘‘single step’’) and the HALT instruction forces the CPU to stop until an interrupt is received. As the
instruction execution is completed (or in the HALT state) the INT pin is polled for an interrupt. In the event of an
interrupt, the PC will not be incremented during the next M1 and an RST instruction can be inserted.

TABLE 1
TMS 8080 REGISTERS

NAME DESIGNATOR LENGTH PURPOSE
Accumulator A 8 Used for arithmetic, logical, and 1/0O operations
B Register B General or most significant 8 bits of double register BC
C Register C 8 General or least significant 8 bits of double register BC
D Register D 8 General or most significant 8 bits of double register DE
E Register E 8 General or least significant 8 bits of double register DE
H Register H 8 General or most significant 8 bits of double register HL
L Register L 8 General or least significant 8 bits of double register HL
Program Counter PC 16 Contains address of next byte tobe fetched
Stack Pointer SP 16 Contains address of the last byte of data saved in

the memory stack

Flag Register F 5 Five flags (C, Z, S, P, C1)

NOTE: Registers B and C may be used together as a single 16-bit register, likewise, D and E, and H and L.

TABLE 2

FLAG DESCRIPTIONS

SymBOL TESTABLE DESCRIPTION
¢ YES C is the carry/borrow out of the MSB (most significant bit) of the ALU (Arithment Logic

Unit). A TRUE condition (C = 1) indicates overflow for addition or underflow for

subtraction.

Z YES A TRUE condition (Z = 1) indicates that the output of the ALU isequal to zero.
S YES A TRUE condition (S = 1) indicates that the MSB of the ALU output is equal to a one (1).
P YES A TRUE condition (P = 1) indicates that the output of the ALU has even parity (the

number of bits equal to one is even).

C1 NO C1isthe carry out of the fourth bit of the ALU (TRUE condition). C1is used only for BCD

correction with the DAA instruction.

TABLE 3
FUNCTION OF THE DAA INSTRUCTION

Assume the accumulator (A) contains two BCD digits, X and Y

7 4 3 0
ACC X Y
ACCUMULATOR ACCUMULATOR
BEFORE DAA AFTER DAA

c |A7...Aq| C1 [A3...Ag| C Az...Ag|C1 A3...Aq
0 X <10 0 Y <10 0 X 0 Y
0 X <10 1 Y <10 0 X 0 Y +6
0 X<9 0 Y10 | O X +1 1 Y +6
1 X <10 0 Y <10 1 X+6 0 Y
1 X <10 1 Y <10 1 X+6 0 Y+6
1 X< 10 0 Y =10 1 X+7 1 Y+6
0 X .10 0 Y <10 1 X+6 0 Y
0 X =10 1 Y <10 1 X+6 0 Y+6
0 X*9 0 Y 310 1 X+7 1 Y +6

NOTE: The corrections shown in Table 3 are sufficient for addition. For subtraction, the programmer must account for the borrow
condition that can occurand give erroneous results. The most straight forward method is to set A = 999 and carry = 1.Then
add the minuend to A after subtracting the subtrahend from A.

D-4

SIGNATURE PIN

A15 (MSB)
A14

A13

A12

Al

A10

A9

A8

A7

A6

A5

A4

A3

A2

A1l

A0 (LSB)

D7 (MSB)
D6
D5
D4
D3
D2
D1
DO (LSB)

Vss
VBB
Vce
VDD
®1

2

RESET

HOLD

INT

INTE

DBIN

TABLE 4
TMS 8080 PIN DEFINITIONS

1/0 DESCRIPTION

36 ouT A15 through AO comprise the address bus. True memory or 1/O device addresses appear on

39 ouT this 3-state bus during the first state time of each instruction cycle.

38 ouT

37 ouT

40 ouT

ouT

35 ouT

34 ouT

33 ouT

32 ouT

31 ouT

30 ouT

29 ouT

27 ouT

26 ouT

25 ouT

6 IN/OUT D7 through DO comprise the bidirectional 3-state data bus. Memory, status, or 1/O data is
5 UN/OUN transferred on this bus.
4 IN/OUT
3 | IN/OUT
7 IN/OUT
8 IN/OUT
9 IN/OUT
10 IN/OUT
2 Ground reference

1 Supply voltage (—5 V nominal)

20 Supply voltage (5 V nominal)

28 Supply voltage (12 V nominal)

22 IN Phase 1 clock.

15 IN Phase 2 clock. See page 19 for ¢1 and ¢2 timing.

12 IN Reset. When active (high) for a minimum of 3 clock cycles, the RESET input causes the
TMS 8080 to be reset. PC is cleared, interrupts are disabled, and after RESET, instruction
execution starts at memory location 0. To prevent a lockup condition, a HALT instruction
must not be used in location 0.

13 IN Hold signal. When active (high) HOLD causes the TMS 8080 to enter a hold state and float
(put the 3-state address and data bus in a high-impedance state). The chip acknowledges
entering the hold state with the HLDA signal and will not accept interrupts until it leaves
the hold state.

14 IN Interrupt request. When active (high) INT indicates to the TMS8080 that an interrupt is
being requested. The TMS8080 polls INT during a HALT or at the end of an instruction.
The request will be accepted except when INTE is low or the CPU is in the HOLD
condition.

16 ouT Interrupts enabled. INTE indicates that an interrupt will be accepted by the TMS 8080
unless it is in the hold state. INTE is set to a high logic level by the El (Enable Interrupt)
instruction and reset to a low logic level by the DI (Disable Interrupt) instruction. INTE is
also reset when an interrupt is accepted and by a high on RESET.

17 ouT Data bus in. DBIN indicates whether the data bus is in an input or an output mode,

(high = input, low = output).

D-5

2.

2.1

TABLE 4 (CONTINUED)

DESCRIPTION

SIGNATURE | PIN 1/0
WR 18 ouT
SYNC 19 ouT
HLDA 21 ouT
READY 23 IN
WAIT 24 ouT

SIGNATURE DATA BUSBIT
INTA DO

D1
STACK D2
HLTA D3
ouT D4
M1 D5
INP D6
MEMR D7

TMS 8080 INSTRUCTION SET

INSTRUCTION FORMATS

Write. When active (low) WR indicates a write operation on the data bus to memory or to an
1/0 port.

Synchronizing control line. When active (high) SYNC indicates the beginning of each
machine cycle of the TMS8080. Status information is also present on the data bus during
SYNC for external latches.

Hold acknowledge. When active (high) HLDA ind:cates that the TMS8080 is in a hold state.

Ready control line. An active (high) level indicates to the TMS 8080 that an external device
has completed the transfer of data to or from the data bus. READY is used in conjunction
with WAIT for different memory speeds.

Wait status. When active (high) WAIT indicates that the TMS8080 has entered a wait state
pending a READY signal from memory.

TABLE S
TMS 8080 STATUS
DESCRIPTION

Interrupt acknowledge.

Indicates that current machine cycle will be a read (input) (high = read) or a write (output)

(low = write) operation,
Indicates that address is stack address from the SP.
HALT instruction acknowledge.

Indicates that the address bus has an output device address and the data bus has output
data.

Indicates instruction acquisition for fifst byte,
Indicates address bus has address of input device.

Indicates that data bus will be used for memory read data.

TMS 8080 instructions are either one, two, or three bytes long and are stored as binary integers in successive memory

locations in the format shown below.

One-Byte Instructions
D7 D6 D5 D4 D3 D2 D1 DO

Two-Byte Instructions

D7 D6 D5 D4 D3 D2 D1 DO

D7 D8 D5D4D3D2D1DO
Three-Byte Instructions

D7 D6 D5 D4 D3 D2 D1 DO

D7D6 D5D4D3D2D1 DO

D7 D6 D5D4 D3 D2 D1 DO

OP CODE

OP CODE

OPERAND

OP CODE

LOW ADDRESS OR OPERAND 1

HIGH ADDRESS OR OPERAND 2

2.2 [INSTRUCTION SET DESCRIPTION

Operations resulting from the execution of TMS 8080 instructions are described in this section. The flags that are affected by
each instruction are given after the description.

2.2.1 INSTRUCTION SYMBOLS

SYMBOL DESCRIPTION
<by> Second byte of instruction
<bz> Third byte of instruction
ra Register # Register Name
000 B
001 ©
010 D
011 E
100 H
101 L
111 A
Register # Register Name
00 BC
01 DE
10 HL
11 SP
Register # Register Name
0 BC
DE
Register # Register Name
00 BC
01 DE
10 HL

Least significant 8 bits of rg
Most significant 8 bits of rg

Flags True condition
Zero (2) Result is zero
Carry (C) Carry/borrow out of MSB is one
Parity (P) Parity of result is even
Sign (S) MSB of result is one
Carry 1(C1) Carry out of fourth bit is one
M Memory address defined by registers H and L
() Contents of specified address or register
[] Contents at address contained in specified register
= Is transferred to
“ Exchange
Am Bit m of A register (accumulator)
it Flags affected
b2 Single byte immediate operand
b3b2o Double byte immediate operand
(nnn)g (nnn) is an octal (base 8) number

2.2.2 ACCUMULATOR GROUP INSTRUCTIONS

M CYCLES/
MNEMONIC OPERANDS BYTES STATES
ACI bo 2 217
ADC M 2/7
ADC a 1/4
ADD M 2/7
ADD ra 1/4
ADI 2 217
ANA 2/7
ANA ra 1/4
AN 2 2/7
CMA 1/4
cmcC 1/4
CMP M 2/7
CMP 1/4
CPI 2 217
DAA 1/4
DAD 1/10
LDA B 4/13
LDAX c 217
ORA M 2/7
ORA 1/4
ORI 2 217
RAL 1/4
RAR 1/4
RLC 1/4
RRC 1/4

DESCRIPTION
(A) ~(A) + <bp>+(carry), add the second byte of the
instruction and the contents of the carry flag to register A and
place in A. |[C,2,S,P,.C1}

(A) = (A) + (M) + (carry).] C,Z,S,P,C1}
(A) = (A) + (rg) + (carry). {C,ZSPC1}
(A) — (A) + (M), add the contents of M to register A and place in
A. jc,zspcry
(A) « (A) + (rg).}C,2,5,P,C1}
(A) — (A) + <bp>. {C,Z,5,P,C1}
(A) < (A) AND (M), take the logical AND of M and register A
and place in A. The carry flag will be reset low. fC,Z,S,P,CH
(A) < (A) AND (r,). {C,2,S,P,C1}
(A) — (A) AND <bp>.{C,Z2,SP,.C1!}
(A) <= {A), complement A.
(carry) — (M), complement the carry flag. {C }
(A) — (M), compare the contents of M to register A and set the
flags accordingly. {C,Z,S,P,C1}|

(A)=(m) Z2=1

(A) # (M) Z2=0

(A)< (M) C=1

(A)>(M) C=0
(A) — (r). {C,2,8,P,C1}
(A)—<bp>_ {c,z,s,P,C1}
(A)«<BCD correction of (A). The 8 bit A contents is corrected to
form two 4 bit BCD digits after a binary arithmetic operation. A
fiftth flag C1 indicates the overflow from A3. The carry flag C
indicates the overflow from A7 (See Table 3). {C,2,S,P,C1}
(HL) < (HL) + (rp), add the contents of double register ry to
double register HL and place in HL. {C}
(A)—[<b3z> <by>]
(A)=[(ro)]
(A) < (A) OR (M), take the logical OR of the contents of M and
register A and place in A. The carry flag will be reset.
{c.zspct}
(A) ~ (A) OR (ry.{C.Zs,PC1}
(A) « (A) OR <bp>.{C,2,S,P,C1}
Am+1<-Am., Apg+lcarry), (carry)«—(A7). Shift the contents of
register A to the left one bit through the carry flag. iC }
Am=Am*1, A7—(carry), (carry)«Aq.{C }
Am+1Am. Ag+A7 (carry)«(A7). Shift the contents of register
A to the left one bit. Shift Ay into A and into the carry
flag. {C t
AmcAm+1, A7+AQ, (carry)—(Ag). {C |

M CYCLES/

MNEMONIC OPERANDS BYTES STATES
SBB M 217
SBB ra 1 1/4
SBI bp 2 2/7
STA b3bo 3 413

STAX re 1 217
STC 1 1/4
SuB M 1 217
SuB "a 1 1/4
sul by 2 217
XRA M 1 217
XRA s 1 1/4
XRI by 2 217
2.2.3 INPUT/OUTPUT INSTRUCTIONS
M CYCLES/
MNEMONIC OPERANDS BYTES STATES
IN bo 2 3/10
ouT bo 2 3/10
2.2.4 MACHINE INSTRUCTIONS
M CYCLES/

MNEMONIC OPERANDS BYTES STATES
HLT 1 217
NOP 1 1/4

DESCRIPTION

(A)-(A)—(M)—(carry), subtract the contents of M and the
contents of the carry flag from register A and place in A. Two's
complement subtraction is used and a true borrow causes the
carry flag to be set (underflow condition). {C,Z,S,P,Cﬂ
(A)—(A)=(rz)—(carry). {C,Z,S,P,C 1}

(A)=(A)—~<bp>—(carry). {C,Z,S,P,C1}

[<b3> <b2>]<«-(A), store contents of A in memory address
given in bytes 2 and 3.

[{re)}=-(A), store contents of A in memory address given in BC
or DE.

(carry)«=1, set carry flag to a 1 (true condition).

(A)«-(A)—(M), subtract the contents of M from register A and

place in A. Two’'s complement subtraction is used and a true

borrow causes the carry flag to be set (underflow condition).

lc.zsp.cil

(A)=(A)—(rg)} C,2,5,P,C1}

(A)~(A)—<bp>.{C,Z,S,P,C1}

(A)=(A) XOR (M), take the exclusive OR of the contents of M

and register A and place in A. The carry flag will be reset.
{czspcil

(A)«{A) XOR (ry). {C,Z,5,P,C1}

(A)=(A) XOR <by>. {C,2,5,P,C1}

DESCRIPTION
(A)—(input data from data bus), byte 2 is sent on bits A7-A0
and A15-A8 as the input device address. INP status is given on
the data bus.
(Output data)—(A), byte 2 is sent on bits A7-A0 and A15-A8 as
the output device address. OUT status is given on the data bus.

DESCRIPTION

Halt, all machine operations stop. All registers are maintained.
Only an interrupt can return the TMS 8080 to the run mode,
Note that a HLT should not be placed in location zero,
otherwise after the reset pin is active, the TMS 8080 will enter a
nonrecoverable state (until power is removed), i.e., in halt with
if a HLT is
executed while interrupts are disabled. HLTA status is given on
the data bus.

(PC)--(PC)+1, no operation.

interrupts disabled. This condition also occurs

2.2.5 PROGRAM COUNTER AND STACK CONTROL INSTRUCTIONS

MNEMONIC OPERANDS BYTES
CALL b3by 3

Conditional call instructions for true flags:

(f)

CC (carry) bzby 3
CPE (parity) bzbo 3
CM (sign) bsbo 3
CZ (zero) bgby 3

Conditional call instructions for false flags:
()

CNC (carry) b3bp 3
CPO (parity) bzbo 3
CP (sign) b3bo 3
(zero) b3by 3
of 1
El 1
JMP b3by 3

Conditional jump instructions for true flags:

(f)

JC (carry) bgby 3
JPE (parity) b3bo 3
JM (sign) bgby 3
JZ (zero) b3by 3

Conditional jump instructions for false flaas:

(f)

JNC (carry) b3b2 3
JPO (parity) b3by 3
JM (sign) b3bs 3
JNZ (zero) bzbp 3
PCHL 1
POP PSW 1
POP rq 1
PUSH PSW 1
PUSH rd 1
RET 1

M CYCLES/
STATES
5/17

5/17 (Pass)
3/11 (Fail)

5/17 (Pass)
3/11 (Fail)

1/4

114

3/10

3/10

3/10

1/5
3/10

3/10
3/

3/11
3/10

DESCRIPTION
{(SP)—1] [(SP)-2]—(PC), (SP)«(SP)-2, (PC)-<b3> <bp>,
transfer PC to the stack address given by SP, decrement SP
twice, and jump unconditionally to address given in bytes 2 and
3.

I (f) =1, [(SP)=1] [(SP)—2]—(PC), (SP)-—(SP)-2, (PS)—<b3>
<by>, otherwise (PC)—(PC)+3. If the flag specified, f, is 1, then

execute a call. Otherwise, execute the next instruction.

If (f) =0, [(SP)—1] [(SP)—=2]—(PC), (SP)—(SP)-2,
<bp>, otherwise (PC)«—(PC)+3.

Disable interrupts. INTE is driven false to indicate that no
interrupts will be accepted.

Enable interrupts. INTE is driven true to indicate that an
interrupt will be accepted. Execution of this instruction is
delayed to allow the next instruction to be executed before the
INT input is polled.

(PC)+<b3> , jump unconditionally to address given in
bytes 2 and 3.

If (f) = 1, (PC)+<b3><by>, otherwise (PC)«(PC)+3. If the flag
specified, f, is 1, execute a JMP. Otherwise, execute the next

instruction.

1f(f) =0, (PC)«<b3> <by>, othewise (PC)«-(PC)+3.

(PC)+(HL)

(F)<[(SP)}, (A)«-[(SP)+1], (SP)«-(SP)+2, restore the last
stack values addressed by SP into A and F. Increment SP twice.
(rgL)«[(SP)], (rqr)«<1(SP)+1], (SP)—(SP)+2.

[(SP)—1]<(A), [(SP)—2])<«-(F), (SP)«-(SP)—2, save the contents
of A and F into the stack addressed by SP. Decrement SP twice.
[(SP)=1]) «(rqr), [(SP)=2] «(rgH), (SP)«(SP)—2.

(PC)((SP)] [(SP)+1], (SP)«-(SP)+2, return to program at
memory address given by last values in the stack. The SP is

incremented by two.

M CYCLES/
MNEMONIC OPERANDS BYTES STATES DESCRIPTION

Conditional return instructions for true flags:

(f) 3/11 (Pass) if (f) =1, (PC)--[(SP)] [(SP+1], (SP)<(SP)+2. If the flag
RC (carry) Cc 1/5 (Fail) specified, f, is 1, execute a RET. Otherwise, execute the next
RPE (parity) P instruction.
RM (sign) S
RZ (zero) z
Conditional return instructions for talse flags:

(f) 3/11 (Pass) If (f) =0, (PC)—{(SP)] [(SP)+1], (SP)--(SP)+2.
RNC (carry) C 1/5 (Fail)
RPO (parity) P
RP (sign) S
RNZ (zero) Z

RST 3/ [(SP)—=1] [(SP)—2] «(PC) (SP)<-(SP)--2, (PC)<0000R0g where

R is a 3 bit field in RST (RST=3R7g). Transfer PC to the stack
address given by SP, decrement SP twice, and jump to the
address specified by R.

SPHL 1/5 (SP)<(HL).

2.2.6 REGISTER GROUP INSTRUCTIONS

M CYCLES/
MNEMONIC OPERANDS BYTES STATES DESCRIPTION
DCR M . f 3/10 (M)«-(M)—1, decrement the contents of memory location
specified by H and L. {2,S,p,C1}
DCR fa 1/5 (rg)«<{rg)—1, decrement the contents of register rj. {Z,S,P,C1 }
DCX b 1/5 (rp)«(rp)—1, decrement double registers BC, DE, HL, or SP.
INR M 3/10 (M)«(M)+1, increment the contents of memory location
specified by H and L.} 2,S,P,C1 }
INR 3 1 1/5 (rg)=(rg)+1, increment the contents of register ry. {Z,S,P,Cﬂ
IN X b 1 1/5 (rp)<(rp)+1, increment double registers BC, DE, HL, or SP.
LHLD b3bo 3 5/16 (L)« [<b3> <bp>]; (H)— [<b3> <by>+1], load registers H
and L with contents of the two memory locations specified
by bytes 3 and 2.
LXI rpb3b2 3 3/10 (rpH)~<b3>: (rp)+ <b2>, load double registers BC, DE, HL,
or SP immediate with bytes 3, 2, respectively.
MVI M, b7 2 3/10 (M)«<bo>, store immediate byte 2 in the address specified by
HL
MVI rabp 2 217 (rg)e=<b 2>, load register ry immediate with byte 2 of the instruc-
tion.
MOV Mr, 1 217 (M)«=(r), store register ry in the memory location addressed by
Hand L.
MOV raM 1 2/7 (rg)—=(M), load register r5 with contents of memory addressed by
HL.
MOV raifa2 1 1/5 (rg1)<(rap), load register ryq with contents of rao, rap contents

remain unchanged.

SHLD b3bo 3 5/16 [<b3> <bp>] «(L); [<b3> <by>+1)]--(H), store the contents
of H and L into two successive memory locations specified by
bytes 3 and 2.

XCHG 1 1/4 (H)—(D); (L)—(E), exchange double registers HL and DE

XTHL 1 5/18 (L)~ [(SP)], (H})—~[(SP)+1], (SP)=(SP), exchange the top of the
stack with register HL.

2.3 INSTRUCTION SET OPCODES ALPHABETICALLY LISTED.

MNEMONIC BYTES
ACI 2
ADC M
ADCr

ADD M 1
ADD r 1

ADI 2
ANA M 1
ANAr 1

ANI
CALL
cC

Cc™m
CMA
cMmcC
CMP M
CMP r

w w wN

CNC
CNZz
CcpP
CPE
CPI
CPO
cz
DAA

- W W N W W W W

DESCRIPTION

Add immediate to A with carryT
Add memory to A with carry®

Add register to A with carryT

Add memory to AT
Add register to AT

Add immediate to AT
AND memory with At
AND register with At

AND immediate with AT
Call unconditional

Call on carry

Call on minus
Complement A
Complement carry:
Compare memory with At

Compare register with A

Call on no carry

Call on no zero

Call on positive

Call on parity even

Compare immediate with At
Call on parity odd

Call on zero

Decimal adjust at

REGISTER
AFFECTED

> I MmO O ®

P IMmMOO0O®

> rr T mOO @

> I MQOO®

* Two possible cycle times (11/17) indicate instruction cycles dependent on condition flags.

T All flags (C, 2, s, P, C1) affected

“Only carry flag affected.

POSITIVE-LOGIC

HEX OPCODE
\D7-D4, \D3-DO,
€ E
8 E
8 8
8 9
8 A
8 B
8 @
8 D
8 F
8 6
8 0
8 1
8 2
8 3
8 a4
8 5
8 7
@ 6
A 6
A 0
A 1
A 2
A 3
A a4
A 5
A 7
E 6
@ D
D c
F c
2 F
3 F
B E
B 8
B 9
B A
B B
B c
B D
B F
D a4
c a4
F a4
E c
F E
E a4
c c
2 7

CLOCK
CYCLES*
7
7
4

17
11/17
11/17

11/17
11/17
11/17
11/17

11/17
11/17

MNEMONIC BYTES

DAD B
DADC
DADH
DAD SP
DCR M
DCRr

- e ek e

DCX B
DCX D
DCX H
DCX SP
DI
El

HLT
IN
INR M
INR r

= A N =S = A a A -

INX B
INX D
INX H
INX SP
JC

JM
JMP
JNC
JNZ
JP

JPE
JPO
Jz
LDA
LDAX B
LDAX D
LHLD
LXIB
LXI D
LXIH
L X1 SP

W WWW= = = WWwWwWwwwwww-=" = = =

w

iOnly carry flag affected.
SAl flags except carry affected.

DESCRIPTION

Add B&C to H&L ¥

Add D&E to H&L¥

Add H&L to H&LF

Add stack pointer to H&L ¥
Decrement Memory§

Decrement Register ¥

Decrement B&C
Decrement D&E
Decrement H&L
Decrement stack pointer
Disable interrupts
Enable interrupts

Halt

Input

{ncrement memory§

Increment register§

Increment B&C register
Increment D& E register
Increment H&L register
Increment stack pointer

Jump on carry

Jump on minus

Jump unconditional

Jump on no carry

Jump on no zero

Jump on positive

Jump on parity even

Jump on parity odd

Jump on zero

Load A direct

Load A indirect

Load A indirect

Load H&L direct

Load immediate register pair B&C
Load immediate register pair D&E
L.oad immediate register

Load immediate stack pointer

REGISTER

AFFECTED

> I mOO®

> I Mo O®

POSITIVE-LOGIC
HEX OPCODE

\D7-D4,

WN = ON =0 wWOMM™TOOO MO WN-=00WMNN-==00w0iDOuTmwmNn-—=0WwWNN-==00WwuwN-=O0

\D3-D0,

4 e 2 a9 DD DD PNUNDNNNWDDPWWWWOOAONOSDSSNDDO De®®O®®OIOO T OO OO © © © ©

CLOCK

CYCLES

10
10
10
10
10
5

o o o

10
10
10
10
10
10
10
10
13

16
10
10
10
10

POSITIVE-LOGIC

REGISTER HEX OPCODE CLOCK

MNEMONIC BYTES DESCRIPTION AFFECTED \D7-D4, \D3-DO/ CYCLES
0

o]

MOV M,r Move register to memory 7

MOV r,M 1 Move memory to register

P - IMOO0 ®prITmooO

MOV rq,ro 1 Move register to register B,B

c.c
c,D
C.E
C,H
.CL
C.A
D,B
D,C
D,D
D,E
D,H
H,L
DA

EB
E.C
E,D
E,E
E,H
EL
E,A
H,B
H,C
H,D
H,E
H,H
H,L
H,A
LB

O 0o OO0 oo 000D MDD DNEDDEDNDDNDDDDANCUNOOOO 00D DN U NN SN ~NNN
W N O D WN =0 TOO®>P OV HdWN=20TIOODEP» © 0w HWN=2OMMmoMoMOod~NwOO D WN

POSITIVE-LOGIC

REGISTER HEX OPCODE CLOCK
MNEMONIC BYTES DESCRIPTION AFFECTED \D7-D4, \D3-DO/ CYCLES*
MOV rq, rp Move register to register (continued) L.C 6 9
L,D 6 A
L.E 6 B
LH 6 &
L,L 6 D
LA 6 F
A,B 7 8
AC 7 9
A,D 7 A
AE 7 B
AH 7 C
AL 7 D
AA 7 F
MVI M 2 Move immediate memory 3 6 10
MVI r 2 Move immediate register B 0 6
& 0 E
D 1 6
E 1 E
H 2 6
L 2 E
A 3 E
NOP 1 No operation 4 0 0
ORA M 1 OR memory with AT B 6
ORA r 1 OR register with AT B B 0
C B 1
D B 2
E B 3
H B 4
L B 5
A B 7
ORI 2 OR immediate with AT F 6 7
ouT 2 Output D 3 10
PCHL 1 H&L to program counter E 9 5
POP B 1 Pop register pair B&C off stack @ 10
POP D 1 Pop register pair D& E off stack D 10
POP H 1 Pop register pair H& L off stack E 10
POP PSW 1 Pop A and flags off stack’ F 10
PUSH B 1 Push register pair B&C C 5 11
PUSH D 1 Push register pair D&C D 5 11
PUSH H 2 Push register pair H& L on stack E 5 11
PUSH PSW 1 Push A and Flags on stack F 5 11
RAL 1 Rotate A left through carry & 1 7 4
RAR 1 Rotate A right through carry i 1 F 4
RC 1 Return on carry D 8 5/11
RET 1 Return C 9 10
RLC 1 Rotate A left 0 7 4
RM 1 Return on minus F 8 5/11
RNC 1 Return on no carry D 0 5/11
RNZ 1 Return on no zero Cc 0 5/11
RP 1 Return on positive F 0 5/11

* Two possible cycles times (11/17) indicate instruction cycles dependent on condition flags.
TAll flags (C, 2, S, P, C1) affected.
$Only carry flag affected.

MNEMONIC BYTES

RPE
RPO
RRC
RST

RZ 1
SBB M 1
SBB r 1

SBI
SHLD
SPHL
STA
STAX B
STAX D
STC
SUB M
SUB r

W = W N

Sul

XCHG
XRA M
XRAr

- o o N

XRI 2
XTHL 1

DESCRIPTION

Return on parity even
Return on parity odd
Rotate A right
Restart

Return on Zero
Subtract memory from A with borrowt

Subtract register from A with borrow’

Subtract immediate from A with borrow’
Store H& L direct

H&L to stack poi'nter

Store A direct

Store A indirect

Store A indirect

Set carry ¥

Subtract memory from At

Subtract register from AT

Subtract immediate from AT

Exchange D&E, H&L registers
Exclusive OR memory with At
Exclusive OR register with At

Exclusive OR immediate with AT
Exchange top of stack H&L

REGISTER

AFFECTED

PC«~00001¢
PC—00081¢
PC00107¢
PC-00181¢
PC-00201¢
PC«-00281¢
PC«-00304¢
PC—00381¢

>r I mg0Om

> rr I mOO®

> - I mMmQOO®

*Two possible cycles times (11/17) indicate instruction cycles dependent on condition flags.

TAll flags (C, Z, S, P, C1) affected.
+Only carry flag affected.

D-16

POSITIVE-LOGIC

HEX OPCODE
\D7-D4, \D3-DO0/
E 8
E 0
0 F

mmD>» > >» > > > P> P> MO OO © O O O O© O©W=0wWTNOTWOOO©O®O©®O®O©O©OTTmMmMmMmOOOOO

WMmMmmTMOO TP O O0MDONAODWN=20O0~NNNNONMTMTOIOO®PO© 0 MOEONTNTTNT NV

CLOCK
CYCLES*

5/11
5/11
4
11

5/11

H NPV

3. TMS 8080 ELECTRICAL AND MECHANICAL SPECIFICATIONS

3.1 ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE
(UNLESS OTHERWISE NOTED)*

Supply voltage, Ve (seeNote 1) —03Vto20V
Supply voltage, Vpp (see Note 1 e W N CEP RN W B W MM R m @ he e s o @ omesnm w o sasw —0.3Vio20V
Supply voltage, Vgg (see Note 1) G % W @R ¥ W S ¥ WA w s ow saws & w oaws —03Vto20V
All input and output voltages (see Note 1) —03Vto20V
Continuous power dissipation v e e e e e e e e e e e e e e .. 1BW
Operating free-air temperature range e e e e e e 0°C to 70°C
Storage temperature range e e e e e e e e e e e e e e e e e —65°C to 150°C

*Stresses beyond those listed under ‘“Absolute Maximum Ratings’” may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the ‘“Recommended Operating
Conditions’* section of this specification is not implied. E xposure to absolute-maximum-rated conditions for extended periods may affect
device reliability.

NOTE 1: Under absolute maximum ratings voltage values are with respect to the normally most negative supply voltage, Vgg (substrate).

Throughout the remainder of this data sheet, voltage values are with respect to Vgg unless otherwise noted.

3.2 RECOMMENDED OPERATING CONDITIONS

MIN NOM MAX |UNIT
Supply voltage, Vgg —4.75 -5 —-525| V
Supply voltage, Vcc 4.75 5 525 | V
Supply voltage, Vpp 1.4 12 126 | V
Supply voltage, Vgg 0 \ I
High-level input voltage, V| (all inputs except clocks) (see Note 2) 3.3 Veetl| Vo
High-level clock input voltage, VH(g) Vpp-1 Vppt+l| V
Low-level input voltage, V| (all inputs except clocks) (see Note 3) -1 08| Vv :
Low-level clock input voltage, V| () (see Note 3) -1 06| V
Operating free-air temperature, T a 0 70 C
3.3 ELECTRICAL CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(UNLESS OTHERWISE NOTED)
PARAMETER TEST CONDITIONS MIN TYPT mAX |UNIT
Input current (any input except
L cl(?cks and data b:ljs) ’ ’ Vi=0VioeVee $10] wA
l(®) Clock input current Vi) =0V toVpp 10| uA
l1(DB) Input current, data bus Vi(ipB) -0 Vto Vce -100 rA
Address or data bus input Vi(ad) or Vi(DB) = VcC 10
l1{hotd) . A
current during hold Vi(ad) or Vi(pB) -0V —-100
VOoH High-level output voltage loy - 100 nA 3.7 \%
VoL Low-level output voltage loL(DB) = 1.7 mA, 045 V
lor =0.75 mA (any output except DB)
IBB(av) Average supply current from Vgg —0.01 -1
IcClay) Average supply current from Vo Operatinﬂg at te(g) = 480 ns, 60 51 mA
IDD(av) Average supply current from Vpp Ta=25C 40 67
(0 Capacitance, any input except clock Vecec = VDD =Vss =0V, 10 20
Ci(g) Clock input capacitance Vgg = ~4.75t0 =5.25 V, f = 1 MHz, 5 10| pF
Co Output capacitance All other pins at 0 V 10 20

TAll typical values are at Ta =25 Cand nominal voltages.
NOTES: 2. Active pull-up resistors of nominally 2 k{2 will be switched onto the data bus when DBIN is high and the data input voltage is
more positive than V |y min.
3. The algebraic convention where the most negative limit is designated as minimum is used in this specification for logic voltage
levels only.

3.4 TIMING REQUIREMENTS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(SEE FIGURE 2)

MIN MAX |UNIT
te(o) Clock cycle time (see Note 5) 480 2000 | ns
tr (o) Clock rise time B 50 | ns
() Clock fall time 5] 50 | ns
tw(e1) Pulse width, clock 1 high 60 ns
tw(e?2) Pulse width, clock 2 high 220 ns
td(»1L-n2) Delay time, clock 1 low to clock 2 0 ns

Delay time, clock 2 to clock 1 70 ns
td(m1 H-r,‘:«2) Delay time, clock 1 high to clock 2 (time between leading edges) 130 ns
tsu(da-p1) Data setup time with respect to clock 1 50 ns
tsu(da-»2) Data setup time with respect to clock 2 150 ns
tsu(hold) Hold input setup time 140 ns
tsulint) Interrupt input setup time 180 ns
tsu(rdy) Ready input setup time 120 ns
th(da) Data hold time (see Note 6) tPD(DBI) ns
th(hold) Hold input hold time 0 ns
thiint) Interrupt input hold time 0 ns
th(rdy) Ready input hold time 0 ns

NOTES: 5. te(ey) = tg(oiL-92) ¥ tr(o2) ¥ tw(2) ¥ H(h2) * ta(02-01) * tr(gy1)- 480 ns S te(p) < 2000 ns.
6. The data input should be enabled using the DBIN status signal. No bus conflict can then occur and the data hold time
requirerment is thus assured.

3.5 SWITCHING CHARACTERISTICS OVER FULL RANGE OF RECOMMENDED OPERATING CONDITIONS
(SEE FIGURE 2)

PARAMETER TEST CONDITIONS MIN MAX [UNIT
tPD(ad) Propagation delay time, clock 2 to address outputs 200 | ns
tPD(da) Propagation delay time, clock 2 to databus CL = 100 pF 220 | ns
tpD(cont) Propagation delay time, clocks to control outputs RL=1.3 kSZ, 120 ns
tpp(DBI) Propagation delay time, clock 2 to DBIN output 25 140 ns
tPD(int) Propagation delay time, clock 2 to INTE output 200 ns
tD| Time for data bus to enter input mode tpD(DBI) NS

Disable time to high-impedance state
tPXZ . 120 ns
during hold (address outputs and data bus)

The time that the address outputs and output data will remain stable after WR goes high, tyya and twp 2ty (P1H-02)-
The time between address outputs becoming stable and WR going low, tay <2 te(¢) —td(@H -62)—'r(¢)_120 ns.

The time between output data becoming stable and WR going low, tpw 2 tc(o)—td(p1H-¢2) ~t ()~ 150 ns.

The following are relevant when interfacing to devices requiring V) min of 3.3 V:

a) Maximum output rise time (tT_H) from 0.8 V to 3.3V is 140 ns with C|_as specified for the propagation delay times above.

b} Maximum propagation delay times when measured to Vief(H) = 3 V (instead of 2 V) will be 60 ns more than as specified above with
C as specified.

3V

TMS 8080
OUTPUT

C| includes probe and jig capacitance.

LOAD CIRCUIT

¢ 34NOld

‘abpa Buljjey L 32012 ayl 01 19adsad Yyrim sl Bulwil ‘Ajuo apow 1jey 6uiung 6
‘patinbais 10U S| uoNlBZIUOJYDOUAS

.

{eusa1x 3 "uononuisul buimojloy ayr vo paziubodoas aq 01 uonodniisul Aue JO 3DAD 20|02 1se] ayl uo poisad siyl Buiunp s|qeis aq i1snw teubis 1dnussiul ayy
‘UOI1RZIUOJIYDUAS |RUIBIXD

sa4inbai siy | "apow p|oYy ayl ul uaym HAAS Pue GS 'S ‘€S Bulunp pue apow pjoy ayl Buliaiua uaym AAS 40 2S Bulinp porsad siyl 104 a1qers aq i1snw jeubts pjoy ayl @
‘UOI1BZIVOIYDUAS |BUIBIX3 SBIINDaJ SIY] "AAS 40 ZS Burunp pomsad siyy 1oy ajqers aqisnw |eubis Apeasay) 'p
‘paiysies aq 1snw (ZOBP)NS) pue (LO-BP)NS) 10q 10y stuawalinbay '£S Bulinp ybiy s1 N |8 Q Uaym poliad styl 104 3|gels ag 1snw u| elieg o
A0 = MRIA Az = (H)IBI5 'sindur 10410 A L = (THRIA "N g'g = (H)BI A "3201] :saBe1j0n 80us18481 BUIMO||O) 31 1B BPEW 318 SIUBWAINSEaW 3wl ‘g
"8|9AD aulydew d1y10ads Aue 1uasaidas 10u $30p M ‘Ajuo sdiysuone|as buiwil smoys wesbeip burwn siyy ‘e :S31 0N
JLNI LNO
(unady AI_ : . (UNY; —»f le—
LNI NI
| F VYAaiH LNO
i
(uos)ad;— |je— | |
AdT0H NI
®
! _
|
| _ _ AP 1IvM LNO
|
__ | ___.ESE&_lij pe—ot(Apajns _ !
| I AQv34d NI
I ::ouun_%Ll'__ be— (1000)Qd) 4am _‘HV:.,_ilin:E o 1l
I I 1IﬂIIIIIIIIIIJ I] o Il 4M LNO
Py _ oo T | e—etusaiaan re—e+(180)0d
_ _ | _s ! NIgda 1No
| _ _ I | I 1 | A |
| | pol I L | | —! [e-(uodddy —» pe—(uodjaq,
| 4 ONAS LNO
| | : ! __ | (ze-ep)ns, | I.h |
ZXd1 I |] | I (Le-epins; gy o \ _
So—n .)
- 44—l | Iy H— = A 0a-£a o/l
- | -] |
l:J.llh|I+III noviva | | _ [<y ! _—
P _ Fop bl I | emaa _ (eP)Qdy
P | vm Lo [My,
————4—————t———t—— —_ ' —— OvSLv 1NO
1 | | |
ZXdy+e—ad I | : I I I i I
| | | i I I I | (| | :o_.»wouu_l_tli | (Z#HLOPy
|] by | ! ZO NI
| [i i
_ | o o1
= 1oNI
) —o e (10)M,
1
(2H L¢Py — r| le——(¢)o,——o

(g pue e sajou 3as) swiojanem abeljon

D-19

36 TERMINAL ASSIGNMENTS

TMS 8080

A10

VsS:
D4
D5
D6
D7

3.7 MECHANICAL DATA

40-PIN CERAMIC PACKAGE

MAX

e

INDEX
DOT

NOTES: A. The true-position pin spacing is 0.100 between centerkines. Each pin centerline is located within 0.010
of its true longitudinal position relative to pins 1 and 40.
B. AIll dimensions are in inches unless otherwise noted.

D-20

APPENDIX E

APPENDIX E

2\

®
How to Align the Intecolor 8001.

CONTENTS

1.0 SAFETY PRECAUTIONS
1.0.1 HIGHE VOLTAGE

1.0.2 X-RADIATION PRECAUTIONS

2.0 INSTALLATION AND SERVICE ADJUSTMENTS

SERVICING PRECAUTIONS

AC LINE TAP SELECTOR

VERTICAL DEFLECTION

HORIZONTAL DEFLECTION

HIGH WOLTAGE ADJUSTMENT

FOCUS ADJUSTMENT

PURITY ADJUSTMENT

COLOR TEMPERATURE ADJUSTMENTS

TOP, BOTTOM, AND SIDE PINCUSHION ADJUSTMENT
.10 CONVERGENCE ADJUSTMENT PRELIMINARIES
.11 CONVERGENCE STATIC ADJUSTMENTS

.12 FINAL CONVERGENCE

o~ TULPwN

NNMNDNNMNDNDNNDNDNDNDDNDDND
eNoNoloNoloNelololololNo]

© 1976

1.0 SAFETY PRECAUTIONS

WARNING: The following precautions should be observed:

0

Do not install, remove, or handle the picture tube in any
manner unless shatter-proof goggles are worn. People not
so equipped should be kept away while picture tubes are
handled. Keep picture tube away from the body while
handling.

Part of the High Voltage is connected to the AC line
directly. This circuitry, found on the Analog Module
(100047), is isolated from the remainder of the circuitry
by optical isolator, U3, and driver transformer, T101.
Should service of the High Voltage be required it is
recommended that an isolation transformer be inserted in
the power line between the Intecolor®8001 and the AC
supply before any service is performed. When the Chassis
must be operated directly from the AC supply, the power
plug should always be inserted in the correct polarity to
connect the High Voltage common (emitter of Q5) to the
ground side of the AC line. Check with a VOM or oscillo-
scope to see if a potential exists between this point and
a known earth ground. A zero reading should be obtained.
If any voltage reading is obtained, reverse the power plug
and recheck for zero meter reading.

When service is required, observe the original lead dress.
Extra precaution should be given to assure correct lead dress
in the high voltage circuitry and video area. Where a short
circuit has occurred, replace those components that indicate
evidence of overheating. Always use the manufacturer's
recommended replacement component,

1.

1.

0.

0.

1

2

HIGH VOLTAGE

NOTE: THE NOMINAL HIGH VOLTAGE FOR THE INTECOLOR®8001
17" or 19" TERMINAL IS 25 KV. THE HIGH VOLTAGE MUST
NOT, UNDER ANY CIRCUMSTANCES, EXCEED 27.5KV.

Each time a terminal's High Voltage requires servicing,
measurements should be made at normal viewing settings
of the Brightness Control. This will afford assurance
that;

1. The High Voltage is within limits specified.

2 The High Voltage regulation circuit is function-
ing properly.

3. X-Radiation is at a minimum.

If the High Voltage measures abnormally high or the

High Voltage Regulation Circuit is not functioning properly,
the Terminal should be restored to normal operation through
service or adjustments. (See 2.0.5 for High Voltage
Adjustment procedure.)

IT IS IMPORTANT TO USE AN ACCURATE AND RELIABLE HIGH
VOLTAGE METER.

X-RADIATION PRECAUTIONS

The primary source of X Radiation in this Terminal is
the picture tube.

The tube utilized for the above mentioned function in
the terminal is specifically constructed to limit X-
Radiation emissions.

For continued X-Radiation protection, the replacement tube

must be the same type as the original, including suffix
letter, or an ISC approved type.

E-3

2.0

2.0.1

INSTALLATION AND SERVICE ADJUSTMENTS
SERVICING PRECAUTIONS

Purity, Color, Temperature, and Convergence adjustments
for the Intecolor®8001 are essentially the same as for
conventional shadow mask color tubes. Certain pre-
cautions should be taken, however, in servicing the
Intecolor®8001 terminal.

Some precautions to observe while servicing the solid
state chassis are listed below:

1. Always connect the ground lead of a test instrument
to the chassis before connecting the positive lead;
conversely, always remove the ground lead of a test
instrument last.

2. Do not check for high voltage by drawing an arc. Use
a high voltage meter or a high voltage probe with a VOM.

3. Do not bridge electrolytic capacitors since resultant
surges may damage solid state devices.

4. Some transistors are equipped with heat sinks. Do not
operate the transistor with the heat sink removed.

5. All soldering irons used where transistors and integrated
chips are concerned should be 35 watt (6 volts) irons and
grounded in such a way that no voltage will be applied to
the solid state device during the soldering operation.
This precaution is to prevent possible damage to the
device due to excessive heat or voltage applied under
no bias conditions.

6. When servicing the video circuitry it is recommended that

an oscilloscope of at least 100 MHZ bandwidth, such as
the Tektronix 454A, be used.

E-4

2.0.2

2:.0.3

2.0.4

AC LINE TAP SELECTOR

The AC Line Tap Selector is located inside the chassis
on the right hand side as viewed from the rear (See
Figure 2.0.2.1). 1In areas having a 115VAC line
supply, this tap should be left in the 115 VAC
position. Other taps are shown depending on the

line voltage.

VERTICAL DEFLECTION

At 115 volts line voltage adjust the VERTICAL HEIGHT
CONTROL, R3, (See Figure 2.0.3.1) and the VERTICAL
POSITION CONTROL, R4, so that the picutre is centered
and there is a 12" wide by 10" high display. A
suitable display is found by filling up the screen
with a single character or erasing the screen with

a background color.

HORIZONTAL DEFLECTION

Adjust the HORIZONTAL WIDTH CONTROL, R6, (Analog
Module, 100047) (See Figure 2.0.3.1) so that the
picture has a 12" wide by 10" high display.
HORIZONTAL CENTERING is accomplished by adjusting
R3 on the rear edge of the Display Generator Card,
100117. Adjusting the Pot R3 causes one character
movements to the right or left of the screen.

Blue/Wht b—_T"T"7]| 105

Black/Wht 3—{_-7"73| 115 Black

- ac
Green/Wht 2—LC 1| 125 Tap Selector
Red/Wht 1—C " "] 135

AC LINE TRANSFORMER TAP SELECTION
FIGURE 2.0.2.1

Horizontal Horizontal

Pincushion @ @ Width

R7 R6

Vertical
Height
oFt

Vertical Vertical
Position (:) (:) Pincushion
R4 R5

ANALOG MODULE (100047) PRINTED CIRCUIT BOARD BOTTOM VIEW
FIGURE 2.0.3.1

2.

0.5

2.0.6

2.

0.

7

HIGH VOLTAGE ADJUSTMENT

Preset High Voltage Adjustment Control R8 (Analog
Module 100047) to 1/2 clockwise, and Brightness
Control R17, to maximum counterclockwise (minimum
brightness).

Remove the High Voltage Anode Cap from the tube and
connect a Pomona #2900A or equivalent to the High
Voltage Cap. CAUTION: BE SURE HV PROBE GROUND IS
GROUNDED. INSURE THAT ANODE CAP IS ISOLATED FROM
ALL PERSONS AND EQUIPMENT. Adjust High Voltage
Control, R8 for 25 KV.

FOCUS ADJUSTMENT

Create a full page of white dots on the CRT screen
by utilizing the following procedure:

1. Select Foreground Color - WHITE
2. Select Background Color - BLACK

3. Press keyboard "." (period) and allow to
repeat until screen is full of white dots.

Adjust the FOCUS pot (found on the right side (viewing
from rear) of the Analog Card mounting bracket.

Remove the external case with 6 screws) for optimum
focus over the entire screen. (See Figure 2.0.6.1)

PURITY ADJUSTMENT

The Intecolor®8001 should always be facing either north

or south during p.rity adjustment. This assures that any
effect of the earth's normal magnetic field upon beam landing
will be negligible when the terminal is placed in its

normal viewing location.

The instrument should be at room temperature (60°F or above)
for at least 30 minutes before set-up adjustments are made.
Allow a minimum of ten minutes operation at high beam current
(brightness full without bloom) before attempting purity

or convergence adjustments.

R18 Focus Adjustment

R17 Brightness
Adjustment

Remove 3 Screws
on each side to
remove case.

FOCUS AND BRIGHTNESS ADJUSTMENT LOCATION

FIGURE 2.0.6.1

Should any parts of the chassis become magnetized, it
will be necessary to manually degauss the affected areas.
Move a manual (GC 9317 or equivalent) degaussing coil
slowly around those areas and the face of the CR Tube
and slowly withdraw to a distance of six feet before
disconnecting the coil from the AC power source.

Before performing the purity adjustments, the center of
the raster must be converged and the dynamic convergence
set roughly as explained in Section 2.0.12. Check

that the focus control is properly set (See Section 2.0.6).
The focus adjustment should be made with the brightness
control set at maximum beam current without bloom.

1. Purity adjustments are most accurate while
observing one screen only, preferably red.
Erase the screen with the background color '"RED".

2. Loosen the yoke wing nuts and move the yoke to the
rear as far as possible. (See Figure 2.0.7.1)

3. Rotate the purity magnets and adjustment tabs so
that a clean red area is produced at the center
of the screen. Push the yoke forward until a
uniform red raster is obtained. Tighten the
yoke wing nuts.

4, Erase the screen with the background color
'"WHITE'". Check for a uniform white screen
(see COLOR TEMPERATURE ADJUSTMENTS, Section 2.0.8,
for procedure). If uniformity has not been
obtained, reconverge the center of the screen
and repeat the purity adjustments.

5. It should be noted that purity adjustments also
affect the focus and DC Horizontal and Vertical
screen positions and these parameters may have to
be readjusted as outlined under Sections 2.0.3,
2.0.4, and 2.0.6.

BLUE LATERAL
MAGNET
ASSEMBLY

BLUE LATERAL
MAGNET
ASSEMBLY —

PURITY CONVERGENCE DEFLECTION
RINGS YOKE YOKE
ASSEMBLY HOUSING

%’)m)ﬁ* SRl e
|

4((((((% -

BLUE
LATERAL DEFLECTION
ADJUSTMENT YOKE
17" SCREEN
BLUE ‘DEFLECTION
LATERAL YOKE
ADJUSTMENT HOUSING
- =" b |
CONViRGENCE
YOKE
PURITY
ASSEMBLY DEFLECTION
RINGS SOLE
19" SCREEN

YOKE; BLUE LATERAL, AND PURITY
LOCATIONS AND ADJUSTMENTS
FIGURE 2.0.7.1

E-10

2.

2.

0.

0

.9

COLOR TEMPERATURE ADJUSTMENTS

1. Place a screen full of WHITE characters or ERASE
the screen in WHITE. Turn the screen grid drive
controls R14 (RED), R15 (GREEN), R16 (BLUE) (Analog
Module 100047) to minimum drive (Fully CCW) then
turn the BRIGHTNESS Control, R17 to maximum brightness
(Fully CW).

2. Turn the RED control, R14, clockwise until the red
vertical retrace raster line at the top of the . : \
is just visible. Turn the GREEN Control, R15, -
wise until the green vertical retrace raster line at
the top of the screen is just visible. Repeat the
same for the BLUE Control, R16.(ﬁﬂ5>

3. Adjust the BRIGHTNESS Control, R17, until there is
no visible vertical retrace raster line and the
brightness is at a comfortable viewing level with a
minimum of color saturation.

4. Adjust each screen grid drive control, RED (R1l4),
GREEN (R15), and BLUE (R16), until a white screen
is obtained, or a 9300°K color temperature (WHITE).

TOP, BOTTOM, AND SIDE PINCUSHION ADJUSTMENT

Place a suitable test pattern on the screen such as all
'"Y-"" (plus) symbols or all "." (periods). (See Section
2.0.6 for pattern set-up). Any color or WHITE may be used.

The top and bottom (Vertical) pin cushion adjustment 1is
made, if necessary, by adjusting R5 on the Analog Module
(100047) for straight horizontal lines at the top and
bottom of the raster as shown in Figure 2.0.3.1 and
Figure 2.0.9.1.

The side (Horizontal) pin cushion adjustment is made by
adjusting R7 on the Analog Module (100047) for straight
vertical lines on the left and right side of the raster.

vV
V= Vertical
Pincushion= R7
H= Horizontal
Pincushion= R5
PINCUSHION ADJUSTMENT
FIGURE 2.0.9.1
Ull/6= Horizontal=R1
V+
GND
V..

HORIZONTAL AND VERTICAL RAMP ADJUSTMENTS
ANALOG MODULE (100047)

FIGURE 2.0.10.1.1

2.0.10

2.0.1&.1

2.0.10.2

2.0.10.3

2.0.10.4

2.0.10.5

CONVERGENCE ADJUSTMENT PRELIMINARIES

The CONVERGENCE ADJUSTMENT PRELIMINARIES are necessary
only if convergence cannot be obtained as outlined under
FINAL CONVERGENCE ADJUSTMENTS (Section 2.0.12), or if
these areas have required service or parts replacements,
or the adjustment pots have been tampered with. An
oscilloscope, such as the Tektronix 454, or equivalent
will be necessary for these adjustments.

PRELIMINARY HORIZONTAL RAMP ADJUSTMENT

The Horizontal Ramp Ull/6 amplitude is adjusted by Rl on
the Analog Module (100047). The ramp is adjusted so

that the positive peak is equal in height to the negative
peak (symmetrical about ground or W = V-). (See

Figure 2.0.10.1.1).

PRELIMINARY VERTICAL RAMP ADJUSTMENT

The VERTICAL RAMP Ul0/6 amplitude is adjusted by R2 on
the Analog Module (100047) in the same manner as the
HORIZONTAL RAMP ADJUSTMENT (See Figure 2.0.10.1.1).

PRELIMINARY HORIZONTAL PARABOLA ADJUSTMENT (U7/3)
RIGHT & LEFT CENTER, TUBE AREAS 4 & 5 (See Figure 2.0.12.2).

Adjust R9 on the Analog Module (100047) until the bottom
of the Parabola is at Ground level. See Figure 2.0.10.3.1.

PRELIMINARY VERTICAL PARABOLA ADJUSTMENT (U8/3)
TOP & BOTTOM CENTER, TUBE AREAS 2 & 3 (See Figure 2.0.12.2).

Adjust R10 on the Analog Module (100047) until the bottom
of the Parabola is at ground level. See Figure 2.0.10.3.1.

HORIZONTAL AND VERTICAL RAMP ADJUSTMENTS.

Monitor the HORIZONTAL PARABOLA at U7/3 on the Analog
Module (100047). Superimpose a small amount of the video
signals (with a screen full of WHITE characters) by
adding a small amount of the "B'" trace (connect a scope
probe to the collector of Q26 or Q27 or Q28) on the
oscilloscope (CHOP, INVERT B, ADD) to the'"A'" trace

(connected to U7/3). The above may also be accomplished

by simply connecting the "A'" channel Scope ground to a
ground in the vicinity of Q26, Q27, or Q28. The video
will be apparent on the parabola, as shown in Figure
2.0.10.5.1.

Adjust Rl until the superimposed video is as shown
in Figure 2.0.10.5.1.

Monitor the VERTICAL PARABOLA at U8/3 and adjust R2 of
the Analog Module (100047) until the end points of the
parabola are equal in height.

The above procedure is shown in Figure 2.0.10.5.2.
2.0.10.6 VACANT

2.0.10.7 CORNER PARABOLA ADJUSTMENTS
TUBE AREAS 6, 7, 8, and 9 (See Figure 2.0.12.2)

The CORNER PARABOLA ADJUSTMENTS are made by R11l, R12

and R13 on the Analog Module 100047 and monitoring the
waveform as shown at Ul4/3 as in Figure 2.0.10.7.1.

OFFSET is adjusted to zero by R13 by adjusting the
waveform baseline to ground as shown in Figure 2.0.10.7.1,
Waveform A.

BASELINE SLANT is adjusted by R12 on Analog Module
(100047) as shown in B of Figure 2.0.10.7.1. Adjust
for Vge equal to "O0" volts.

VERTICAL SYMMETRY is adjusted as shown in C of
Figure 2.0.10.7.1 using R11l on Analog Module (100047).
Alignment is made by adjusting R1l until tVye = -VHC’

2.0.10.8 HORIZONTAL, VERTICAL and CORNER PARABOLA TOUCH-UP

Touch up of the HORIZONTAL, VERTICAL, and CORNER PARABOLAS
can best be accomplished by monitoring the waveforms on
the J1 on the Convergence Module (100014).

A. Adjust the HORIZONTAL PARABOLA offset, Vyp with R9
on the Analog Module (100047) by monitoring the
waveform at J1/1 on the Convergence Module (100014)
as shown in Figure 2.0.10.8.1, A.

B. Adjust the VERTICAL PARABOLA offset, VVP with R10 on
the Analog Module (100047) by monitoring the waveform
at J1/5 on the Convergence Module (100014) as shown in
Figure 2.0.10.8.1, B

C. Adjust the CORNER PARABOLA offset, VCP with R13 on
the Analog Module (100047) by monitoring the waveform
at J1/7 on the Convergence Module (100014) as shown
in Figure 2.0.10.8.1, C.

E-14

GND

HORIZONTAL - R2
VERTICAL - R10

HORIZONTAL AND .VERTICAL PARABOLA ADJUSTMENTS

FIGURE 2.0.10.3.1

Adjust Rl (Analog Module,
100047) to show 1 divi-
sion difference between
Start and Stop of Video.

1 division

Adjust Scope Gain
to 6 divisions
Superimposed
Video

HORIZONTAL PARABOLA VIDEO ADJUSTMENT
FIGURE 2.0.10.5.1

VERTICAL PARABOLA HEIGHT ADJUSTMENTS

FIGURE 2.0.10.5.2

Adjust VgzVp
using R2 on
Analog Module
(100047)

GND

A. CORNER PARABOLA OFFSET

B. CORNER PARABOLA BASELINE SLANT

C. CORNER PARABOLA VERTICAL SYMMETRY

GND

. Adjust R13, Analog Module

(100047) to VOC = ”O”
Volts offset.

. Monitor Waveform at U1l4/3

on Analog Module (100047)

GND

. Adjust R12 Analog Module

(100047) to VSC = "o"
Volts.

. Monitor waveform at Ul4/3

on Analog Module (100047)

GND

-VHC

. Adjust R1l Analog Module

(100047) to +Vue = -VHC

. Monitor waveform at U1l4/3

on Analog Module (100047)

CORNER PARABOLA ADJUSTMENTS

FIGURE 2.0.10.7.1

Adjust R9 on
Analog Module
(100047) until
Vyp = "'0" Volts

HORIZONTAL PARABOLA
J1/3 ON CONVERGENCE MODULE (100014)

A,

Adjust R10 on
Analog Module
(100047) until
Vyp = "0" Volts

Vyp

VERTICAL PARABOLA
J1/5 ON CONVERGENCE MODULE (100014)

B.
Adjust R13 on Analog Module

(100047) -
"0" Volts

CORNER PARABOLA
J1/7 ON CONVERGENCE MODULE (100014)
C.
HORIZONTAL, VERTICAL, AND CORNER PARABOLA TOUCH-UP

FIGURE 2.0.10.8.1

E-18

2.0.11 CONVERGENCE STATIC ADJUSTMENTS

Place a dot pattern on the screen in the following
manner from the Keyboard.

Define FOREGROUND COLOR AS 'WHITE"
BACKGROUND COLOR AS ''BLACK"

Depress '".'" (period) Key and allow to repeat
until the screen is full of white dots.

The above will fill up the screen with dots. Now
place '"+'" symbols utilizing the keyboard as shown
in Figure 2.0.11.1

Turn all the pots on the Convergence Module (100014) to
the straight up position as shown in Figure 2.0.11.3.

Now adjust the static magnets and the Blue Lateral Magnet
to align the '"+'" symbols R,G,B, colors in Screen Sector 1,
as shown in Figure 2.0.11.2, so as to appear as '"WHITE'".
This will occur when the RED, GREEN, AND BLUE colors are
accurately superimposed on top of each other. With the
exception of BLUE lateral which is explained below.

For the above to be accurate the tube must have been
externally degaused, the Purity adjusted, the FOCUS R18
adjusted for sharp, and the BRIGHTNESS, R17, Analog
Module (100047), set for a low level with the color
temperature being set to 9600°K as explained in previous
sections. DO NOT ATTEMPT FURTHER CONVERGENCE UNLESS THE
ABOVE HAS BEEN PREVIOUSLY PERFORMED. (See Sections

The beams move at approximately the same angle as the
convergence magnets are offset from the vertical plane.
Blue, since it is mounted in the vertical plane moves

CONVERGENCE TEST PATTERN

FIGURE 2.0.11.1

the beam up and down vertically; red and green move the
respective beams on a line at about a 60° angle from the
vertical. The blue lateral magnet moves all three beams
in the horizontal plane, the blue beam in one direction
and the red and green beams in the opposite direction in
a 5 to 1 ratio. The blue beam has the greatest lateral
shift.

The thumb screw adjustment of red, green, and blue center
convergence magnets can be rotated in either direction
continuously. Flux change is accomplished by rotating
the pole position of the magnets, not by moving the
magnets farther from or closer to the respective guns.

Adjust the Static Blue so that the Blue in the center of
the screen is superimposed on the RED and GREEN.

2.0.12 FINAL CONVERGENCE

Touch up the center convergence with the pots R13 (GREEN),
R14 (RED) and R15 (BLUE) on the Convergence Module (100014)
as shown in Figure 2.0.11.2 and Figure 2.0.11.3.

Once center convergence has been adjusted proceed to the
next convergence Screen Sector, 2, as shown in Figure 2.0.11.2.
Proceed with the alignment in the order of the sector numbers
as shown in Figure 2.0.11.2. After each Sector is aligned,
check and touch up the center convergence. Note that

the adjustment pots on the Convergence Module (100014) are
arranged in the same location as each Screen Sector as
viewed on the tube face (and the component side of the

board) and the trio of pot groups in each sector are
arranged as GREEN, RED, AND BLUE corresponding to the
location of the GREEN, RED, and BLUE electron beams as
viewed from the tube face.

When completed with the above, touch up each Screen Sector
as needed in the SAME ORDER as outlined above. Do not
violate the order of the Screen Sector numbers in the
adjustment procedure.

Never attempt a convergence procedure without first setting
the Convergence Module (100014) pots to the center position
as shown in Figure 2.0.12.3 and following the Screen Sector
numbers. It is seldom necessary for the static magnets to
be adjusted unless shipment vibration causes convergence
coil or static magnet movements or unless convergence coil
or yoke replacements become necessary.

E-21

CR TUBE CONVERGENCE SECTORS (SCREEN VIEW)
FIGURE 2.0.11.2

CONVERGENCE BOARD ASSEMBLY SHOWING
CONTROLS ASSOCIATED WITH TUBE SECTORS
(TOP VIEW)
NOTE: Green and Red Pots are interchanged on all 17" Tubes.
FIGURE 2.0.12.3

The CPU
Operating System

Appendix A.
Appendix B.

Appendix C.

TABLE OF CONTENTS

TERMS AND ABBREVIATIONS

CPU O.S. COMMANDS AND MESSAGES

INTECOLOE® 8001

CONFIGURATION

3.1 1/0 System

3.1.1
3.1.2
3.1.3

Logical and Physical Devices
I/0 Subroutines
User Supplied Devices

CPU OPERATING SYSTEM

4.1 P

1Y

[\)
ABA DO DS SO
RO TR
WNHON RO

0

IS
[\S I\

(G2 ey

[N
NN
O O N

4.2.10
4.2.11

4.2.12
4.2.13
4.2.14

oSk

Implementation and Execution
CPU 0O.S. Implementation
Starting CPU 0.S.

Operation And Commands

B Command (Back to CRT 0O.S.)
D Command (Display Data)

F Command (Fill Memory
With Constant)

G Command (Go To)

H Command (Hexadecimal
Arithmetic)

I Command (Reset CRT to
State Sg)
L Command (Read Hex File)
M Command (Move Memory)

R Command (Select Baud Rate
#2)

S Command (Substitute Memory)
X Command (Examine And
Modify Registers)
E Command (End File)
W Command (Write Memory)
N Command (Null Punch)

Instruction Summary

Instruction Execution Times and Bit Patterns

Hexadecimal Program Tape Format

5-7
7-10
10-11

11

12
12
12
12
12
12-14
14-15

l6-17
17-18

18
18-19
19-21

21

22
23-24

24
25-26

26
27-38

39-42

43-44

—--TERMS AND ABBREVIATIONS--

TERMS:

TERM DESCRIPTION

Address A 16 bit number assigned to a memory location
corresponding to its sequential position.

Bit The smallest unit of information which can
be represented. (A bit may be in one of
two states, O or 1).

Byte A group of 8 contiguous bits occupying a
single memory location.

Console Refers to the 8001 CRT Display as the
output device, and the 8001 keyboard
as the input device. Allows operator
interface with the CPU operating system.

Instruction The smallest single operation that the
computer can be directed to execute.

Object Program A program which can be loaded directly into
the computer's memory and which requires no
alteration before execution. An object
program is usually on paper tape, and is
produced by assembling (or compiling) a
source program. Instructions are re-
presented by binary machine code in an
object program.

Program A sequence of instructions which, taken as
a group, allow the computer to accomplish a
desired task.

Source Program A progam which is readable by a programmer
but which must be transformed into object
program format before it can be loaded into
the computer and executed. Instructions in
an assembly language source program are
represented by their assembly language
mnemonic.

System Program A program written to help in the process of
creating user programs.

TERMS -- (Continued):

TERM

User Program

DESCRIPTION

A program written by the user to make the
computer perform any desired task.

Word A group of 16 contiguous bits occupying
two successive memory locations. (2 bytes).
ABBREVIATIONS:
ABBREVIATION DESCRIPTION
Cr Carriage return
CPU Central Processing Unit
Lf Line feed
PROM Programmable Read Only Memory
Sp Space Bar
nnn B nnn represents a number in binary format.
nnn D nnn represents a number in decimal format.
nnn O nnn represents a number in octal format.
nnn Q nnn represents a number in octal format.
nnn H nnn represents a number in hexadecimal format.
Shaded portions of CPU/operator dialog repre-
sent Console output.
CPU O.S. COMMANDS AND MESSAGES
2.0 CPU OPERATING SYSTEM (0.S.)
STARTING ADDRESS - 100 When in 8708 PROM

AT PAUSES AT FFF /=

Pi-Pe
@2-03

All arguments are in hexadecimal form.

A RAM TBST 2,3,47

B 20 BACK TO CRT O.S.

D DISPLAY IN HEXADECIMAL FORMAT

D low address, high address

Memory from low address to high address is displayed in hexadecimal
form.

E END

E address

Endfile mark is created; 60 null characters are written on

punch device

F FILL MEMORY

F low address, high address, data

Memory from low address to high address is filled with data.

G GO TO

G Address, bkptl, bkpt2

Program control is transferred to address. Breakpoints are set at
bkptl and bkpt2. When break points are executed, all of the CPU
registers are automatically displayed.

H HEXADECIMAL ARITHMETIC

H number, number sp

The sum and difference of the two numbers is printed in hexadecimal.

L LOAD HEXADECIMAL TAPE
L. Bias address

A hexadecimal format tape is read into memory at tape address plus
bias address.

M MOVE

M low address, high address, destination address

A block of memory from low address to high address is moved
to location destination address.

N PUNCH NULL

N

Sixty null characters are punched.

R BAUD RATE FOR SECOND RS-232 CHANNEL

R rate number

The rate number must be between 1 and 7. See the "How to Use the 8001
Manual.

S SUBSTITUTE

S address Sp

Memory at address is displayed, and can be modified by typing
in new data. Termination with space opens next sequential
address, termination with carriage return ends command.

X EXAMINE REGISTERS OR MEMORY

X reg ident

Register is displayed, and can be modified as in the S command.

W WRITE HEXADECIMAL
W low address, high address

Memory from low address to high address is punched in hexadecimal
format.

MESSAGES
5 CPU O.S. ready to accept commands

? Error. Reenter command

3.0 INTECOLOE® 8001 CONFIGURATION

3.1 I/0 SYSTEM

The Intecolor® 3001 can support a number of input/output devices,

from the CRT display and the RS232C I/O to devices supplied by

the user. 1In general, it may be convenient to have two devices

which can perform the same function, but to use them for different
purposes at various times. For example, if a program is being assembled,
you might want the program listing to be written on one device, while
any system messages not relevant to the assembly would be written on a
separate device.

The I.O system described below permits this type of change. Devices
may be assigned functions via the System Monitor S command (see Section
4.2.11) or via the user's program. That is, it is possible to write
programs which read from several different input devices and write to
several different output devices of the program's choosing, without re-
quiring any human intervention.

3.1.1 LOGICAL AND PHYSICAL DEVICES

Regardless of how many I/O devices a particular Intecolor” 8001

has, there are only four operations which can be performed to

any of them. For example, a WRITE operation can be performed

either to the RS232C channel 1 to a host computer or a high speed

tape system. All system programs and user-written programs, therefore,
access four LOGICAL DEVICES (i.e., a WRITE device) which are then trans-
lated to a THYSICAL DEVICE (i.e., a high speed tape) by the I/O

system.

The four logical devices available to programs are:

CONSOLE An interactive, character-oriented device used
for both input and output.

READER A character-oriented, input-only device which
transfers data on command and signals the
program when where is no more data (an end-of-
file condition).

WRITE A character-oriented, output-only device which
accepts a character from the program and re-
cords it on some external medium.

LIST A character-oriented, output-only device which
accepts a character from the program and records
it on some external medium in human readable form.

Each of these four logical devices may be associated with one of
four physical devices at any instant, giving a total of 16 phys-

ical devices.

The mapping from logical to physical devices is

specified by an I/O status byte which resides in memory and is
accessible to system and user programs via substitute command.

The address of the I/O status byte is 9F9% hex.

A pointer to

the I/0 status byte is also contained in memory locations @@36

and @@37 (low byte of pointer, high byte of pointer).
mappings appear as follows:

I/0 Status Byte:
Initially

LIST FIELD

PUNCH FIELD

LOGICAL DEVICES

The possible

5 4

10

00

I/0 DEV FIELD

PHYSICAL DEVICES

00 RS232 Channel 1
0ol RS232 Channel 2
CONSOLE 10 CR Tube = Console Output
Keyboard= Console Input
11 (user console device)
00 RS232 Channel 1
01 RS232 Channel 2
READER
10 Keyboard
11 (user reader device 1)

LOGICAL DEVICES I/0 DEV FIELD PHYSICAL DEVICES

00 RS232 Channel 1

0l RS232 Channel 2
WRITE

10 CR Tube

11 (user punch device 1)

00 RS232 Channel 1

0l RS232 Channel 2
LIST

10 CR Tube

11 (user list device 1)

At cold start or system reset, the I/O status byte is set equal
to 82H, causing the CR Tube and keyboard to be selected for console

I/0 and LIST, while the RS232 Channel 1 is selected for both READ
and WRITE.

3.1.2 I/0 SUBROUTINES

The way in which a program performs an I/O operation to any of
the four logical devices is by calling the appropriate sub-

routine supplied by the I/O system. The available subroutines
and their locations in memory are given in the following table:

ROUTINE FUNCTION MEMORY LOCATION
CI Console input 103H
CO Console Output 109H
RI Reader input 106H
PO Punch output 10CH
LO List output 10FH
SO Console String Output 12AH

The rest of this section gives a description and examples of
how to call these subroutines.

CI - CONSOLE INPUT
This routine returns a character received from the selected

console device to the caller in the A register. The A regis-
ter and the condition bits are affected by this operation.

Example:

Assembly Language

CALL CI
STA DATA

CO - CONSOLE OUTPUT
CO transmits a character, passed from the calling program in

the A register, to the device selected for console output. The
A register and the condition bits are affected.

Example:

Assembly Language

MVI A"t
CALL CcO ;PRINT '.' ON CONSOLE

RI - READER INPUT

RI returns a character read from the reader device in the A
register. If no character was read from the device (i.e.,

end of file), the CARRY condition bit is set equal to 1, and
the A register is zeroed. If data is ready, the CARRY bit is
zeroed. If no character is received from the physical device
then striking any key causes an end of file to be simulated and
control is returned to the calling program.

Example:

Assembly Language

CALL RI
Jc EOF ; END OF FILE SENSED
STA DATA

PO - WRITE OUTPUT

PO transmits a character from the calling program to the device
selected as the punch device. PO is identical in format to CO.

LO - LIST OUTPUT

LO performs the same function to the selected list device as
CO and PO do to their selected devices.

SO - CONSOLE STRING OUTPUT

SO transmits a character string to the device selected for console
output. A pointer to the beginning of the string is passed from
the calling program in the HL register pair. The string should be
terminated by a byte having the value 239 (decimal). SO also pro-
vides repeat loops of the form: ee., 237, N, D1, D2, ..., DM, 238,
... where N is the repeat count for the string of bytes D1
through DM.

Example:
Assembly Language

LXT H, STR
CALL SO

STR: DB 'AB', 237, 3, 'CD', 238, 'EFG', 239

This example will print 'ABCDCDCDEFG' on the console device.

FLOPPY TAPE I/0O SUBROUTINES

Three I/0 subroutines are provided for the Intecolor Floppy Tape.
These routines are:

ROUTINE FUNCTION MEMORY LOCATION
TWR Write to Floppy Tape L3P

TRD Read from Floppy Tape

TVF Compare memory with Floppy Tape

The Floppy Tape is a block-transfer device. One record is written
per track. The inputs from the calling program to each of the
three I/0 routines are:

HL register pair - pointer to memory buffer

DE register pair - byte count

A register - Tape drive/track code:
BIT3 = DRIVE: @ or 1
BITS2-0 - Track: @ through 7

After calling any one of the routines, the A register will contain a
status code and will have been tested (ORA A):

A= : No Errors

A=2 Keyboard Abort (Pressing any key on the
keyboard during the data transfer will
abort the operation)

A=4 Buffer too large for write.
A=6 Buffer too small for read.
A=8 Read Failure: A complete, correctly
formatted record could not be read
from the tape.
A=10 : Checksum error.
A=12 s Verify failure. A mismatch was detected between

data in memory and data read from the tape
during a memory compare operation (TVF).

Also, after calling any of the routines, the HL register pair
will point one byte past the last byte manipulated in the memory
buffer.

8.3 USER-SUPPLIED DEVICES

This section describes the necessary steps in hooking up a
user-supplied I/O device to the I/O system.

The I/O subroutines described in Section 3.3.2 assume that
programs (called drivers) exist which perform the actual
transfer of data between I/O devices and the CPU. For in-
stance, when the console input routine is called, it checks
to see which physical device is assigned to the console,
and then branches to the driver appropriate to the device
Therefore, when the user supplies his own device, he must:

1) Write a program to perform the data transfer,
making sure that the program saves and restores
any CPU registers it uses that are not specifi-
cally changed by the I/O subroutine.

10

2) Store a JMP to this driver's address in the
appropriate location as defined in the
following table:

MEMORY LOCATION USE
9F91H USER DEFINED CONSOLE INPUT
9F94H USER DEFINED CONSOLE OUTPUT
9F97H USER DEFINED READER (1)
9F 9AH USER DEFINED WRITE (1)
9F 9DH USER DEFINED LIST (1)

Thus, if the user supplied a custom built listing device, he would
write a driver to transfer data to it in an appropriate manner,
then store the JMP to the driver's address at location 9F9DH. By
assigning LIST=3, his device would receive any listing output
generated.

4.0 CPU OPERATING SYSTEM

The Intecolor 8001 CPU O.S. enables the operator to easily
manipulate the contents of memory,
wen==. and execute programs.

The CPU 0.S., and all Intecolor®8001 system software in

general, use the last 80 memory locations after the refresh
area for storage of temporary data. Therefore, if the opera-
tor runs a program beginning in these locations, and then uses
the CPU 0.S. Text Editor, or Assembler, he must re-load these
80 bytes of his program before running it again. Alternatively,
programs could be written beginning at any higher location.

Then system programs and user programs could be executed in

any order, without requiring the re-load operation.

For a 25 line system these locations are 8FBOH to 8FFFH.
The 48 line system uses locations 9FBOH to 9FFFH.

The CPU O.S. is the operator's interface to the 8080 CPU, and
controls loading and execution of user programs, and to some
extent the debugging of user programs. Figure 4-1 illustrates
memory utilization during various stages of system software
use. While the CPU 0.S. is running, it uses an area at the
top of memory for data storage and scratch work.

11

4.1 CPU OPERATING SYSTEM IMPLEMENTATION AND EXECUTION

4.1.1 CPU O.S. IMPLEMENTATION

The Intecolor®8001 CPU 0.S. program is implemented on two

E PROM modules, which are pre-installed into each Intecolor 8001
with Option 34. This allows the CPU to be used with great

ease, as it is not necessary to wait for lengthy paper-tape
loading operations. All that is required to go on-line with

CPU 0.S. is to turn the Intecolor 8001 on, hit the ESCAPE

key, and then the CPU 0.S. key, and begin execution.

4.1.2. STARTING SYSTEM MONITOR

To begin operating the CPU 0.S., press two keys in sequence,
'ESCAPE', (CPU 0.S.) and the Intecolor 8001 will automatically
jump to the starting address of the CPU O.S.

4.2 CPU O.S. OPERATION AND COMMANDS

The commands consist of a single letter typed into the
Intecolor® 8001 keyboard followed by a number of arguments,
possibly none. The arguments are separated, if there are
more than one, by spaces or commas. A command is terminated
and executed by typing a carriage return or space, depending
upon the command.

a (oM TEST 2,3 M ?) {‘{ 5 v isqa\]

4.2.1 B COMMAND (BACK TO CRT O.S.)

4.2.2 D COMMAND (DISPLAY DATA)

The format of the D command is:
D low address, high address

Low address is a valid 16 bit memory address.

12

High address is a valid 16 bit memory address equal to or
greater than low address.

Description: Upon execution of this command, memory data
from (low address) to (high address) is displayed upon the
list device (normally the CR tube). Data are displayed in
hexadecimal form. Up to sixteen bytes per line are printed,
preceded by the hexadecimal address of the first byte of

that line. A carriage return is forced after a byte having a
low order digit of F in its memory address is printed.

Example: Enter at the keyboard the command:
.D10F, 123(Cr)
and the CR Tube will display:
Ol0F AA
0l10 BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AB CD
0120 EF 12 34 56

where memory locations 0l0F through 0123 are assumed to contain

AA BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AB CD EF
12 34 56

the D command should be used only to examine memory contents. To

punch the memory contents onto a tape, the W command should be

used. These commands produce a tape in the proper formats, while
the D command causes a simple sequence of characters to be
output.

Error conditions:

A55 If low address or high address is greater than 16 bits,
only the last 4 hex digits of the argument will be used
as the address.

Example: The command

.D30010,AB0013(Cr)
is equivalent to the command
.D0010,0013(Cr)

28 If low address is greater than high address, only the
one byte at low address will be displayed.

13

Example: The command:

.D10,6
is equivalent to the command
.D10,10
3. Non-existent memory is equivalent to a string of bytes

all containing FF H.

Example: If memory address 2000 H- 2010 H are invalid, then
the command:

.D2000, 2010
will cause the teletype to print:
2000 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

2010 FF

4. If low address or high address contains an invalid
character, or if high address is omitted, the CR Tube
will immediately display '?(Cr) (1f). and await the
next command.

Example: If the user attempts to enter the number OG as an
address, the following will be displayed:

.DOG?

4.2.3 F COMMAND (FILL MEMORY WITH CONSTANT)

The format of the F command is:
F low address, high address, data
Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

Data is an 8 bit data value.

14

Description: Execution of this command causes memory locations
(low address) through (high address) to be filled with the
constant (data).
Example: The command:

.F7,14,AA (Cx)

will set bytes 0007 through 0014 equal to AA H.

0007 AA AA AA AA AA AA AA AA AA
0010 AA AA AA AA AA

Error Conditions:

115 If low address of high address is greater than 16 bits
(or data is greater than 8 bits), only the last 4 (or 2)
hex digits will be used.

Example: The command:

.F7AB0007,0014,FFACAA (Cr)
is equivalent to the command:
.F0007,0014,AA (Cr)
2. If low address is greater than high address, data will

replace only the byte at low address.

Example: If locations 7, 8, and 9 contain AA H, BB H, and CC H,
execution of the command:

.F7,1,33(Cr)
will cause memory to appear as follows:

0007 33 BB CcC

5] If a non-existent memory address is specified, this
command has no effect.

4. If low address, high address, or data contain an invalid

character, the CR Tube will immediately display '? (Cr) (1lf).'

and await the next command.

Example: If the user tries to enter BQ as data, the following
will be displayed:

.F0012,14,BQ?

15

4.2.4 G COMMAND (GO TO)

The format of the G command is:
G address, bkptl, bkpt2

Address, bkptl, and bkpt2 are valid 16 bit hexadecimal memory
addresses.

Description: The G command causes program control to be trans-
ferred to location address. If either bkptl or bkpt2 is specified,
a breakpoint will be set in the program at the corresponding
address(es). The specified address must correspond to the first
byte of a program instruction. If either breakpoint is en-
countered during program execution, the CPU 0.S. will save and
display all program status (CPU registers and condition bits),
clear all existing breakpoints, and take control. The user may
then examine and/or modify registers or memory, or use any other
monitor commands. This feature allows the user to debug por-
tions of a program.

If address is not specified, the program status is restored
and the saved value of the program counter is used as the new
starting address.

Example: The command:

G24a

will cause program execution to begin at location 24AH, with
no breakpoints being set.

The command:

G,12C
will cause a breakpoint to be set at 12CH, and program execution
to resume at the address indicated by the saved value of the
program counter.
The command:

G
will cause program execution to resume at the address indicated

by the saved value of the program counter, with all status
restored and no breakpoints set.

16

Error Conditions:

455 If address is greater than 16 bits, only the last 4
hex digits of the argument will be used as the address.

Example: The command:

.G3C0010(Cx)
is equivalent to the command
.G0010(Cx)
2. If address is a non-existent memory address, the system

will attempt to transfer control and then return to the
CRT 0O.S. with no response. The CPU O0.S. must then be
manually restarted.

4.2.5. H COMMAND (HEXADECIMAL ARITHMETIC)

The format of the H command is:
.H number, number Sp
Number is a 16 bit hexadecimal number.

Description: The H command is designed to aid the user in
performing hexadecimal arithmetic while using the CPU O.S.

It causes the sum and difference it arquments to be displayed
in two-s complement hexadecimal form. This command is termi-
nated by a space, rather than by a carriage return.

Example:
.H1E,5C 0077 FFC2
Error Conditions:
1. If either number is greater than 16 bits, only the last

4 hex digits are used.
Example: The command:
.HOOABC, 23Sp
is equivalent to the command:

.HOABC, 23Sp

17

2. If number contains an invalid character, the CR Tube
will immediately display '?(Cr) (1f).' and await the
next command.

Example: TIf the user attempts to enter 01P, the following will
be displayed:

.HO1P?

4.2.6 I COMMAND (RESET CRT TO STATE So)

The format of the I command is:

I causes the same action as the CPU reset key
being typed.

4.2.7 L COMMAND (LOAD HEXADECIMAL FILE)

The format for the L command is:

I, bias address

Bias Address is a 16 bit two's complement hexadecimal number.

Description: This command loads tape written in hexadecimal
format (using the W command) into memory. The address at which
the tape is loaded is determined by adding the address on the
tape to the bias address using two's complement arithmetic.

The bias may be negative, but in this case must be in two's
complement form. If the tape was produced using an E command
with a non-zero entry point address (see section 4.2.11),
control will be transferred to that location in memory. Other-
wise, the CPU 0.S. will remain in control and request another
command.

Example: If a tape was used which began at location 0100 H,
the following command:

.LFFBO (Cr)

will cause the tape to be read and loaded into location 50 H.
(1000+FFBO=50) .

18

NOTE : If an error occurs while reading the tape (such as a
checksum error), the CPU 0.S. will immediately stop reading

the tape, display '?(Cr) (Lf).' and await the next command.

The operation may be retried by backing up the tape to any
point before the last colon and issuing another L command,
since each data word specifies the address at which it is to be
loaded. The CPU 0.S. will read up to the first colon it en-
counters, and then begin loading data.

Note that this means that, if you wish to change data in
locations in memory, it is not necessary to regenerate an
entirely new tape with the change; instead you may read in
the original tape, then read in a patch tape which reloads
only the erroneous locations.

Error Conditions:

1. If the bias address is greater than 16 bits, only the
last 4 hex digits are used as the bias address.

Example: The command:
.LOOFFBO (Cr)

is equivalent to the command:

.LFFBO (Cr)
2. If an invalid character is present in the bias address,
the CR Tube will immediately display '*(Cr) (If).' and

await the next command.

Example: If the user attempts to enter GOO as a bias address,
the following will be displayed:

-RG?

4.2.8 M COMMAND (MOVE MEMORY)

The format of the M command is:

.M low address, high address,
destination address

Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

19

Destination address is a valid 16 bit memory address.
Description: The M command causes the block of memory from
low address through high address to be moved to the locations
in memory beginning at destination address.

Example: If memory appears as follows:

LOCATIONS DATA

0300-0304 contain 01020304
0200-0204 contain Al1A2A3A4

Then the command:
M200,204, 300
will cause the following:

LOCATIONS DATA

0300-0304 contain AlA2A3A4
0200-0204 contain A1A2A3A4

Note: The movement is performed byte by byte: the byte at

low address is moved to destination address, then low address

+1 is moved to destination address+1l, etc. Therefore, the

MOVE command may be used to f£ill memory with a byte or sequence

of bytes.

Example: If location 0300 H contains FF H, the command
.M300,310,301(Cr)

will cause locations 300 through 310 to contain FF H. The FF

at 300 is moved to 301, then the byte at 301 (which is now FF),

is moved to 302, and so on.

Error Conditions:

1. If any address is greater than 16 bits, only the
last 4 hex digits are used as the address.

Example: The command:
.M00302,303,00405(Cr)
is equivalent to the command:

1302,303,405(Cr)

20

225 If low address is greater than high address, only
one byte will be moved from low address to destina-
tion address.
Example: The command:
.M300,2F0,100(Cr)
is equivalent to the command:
.M300,300,100(Cr)
3. If low address through high address specifies a non-
existent range of memory, bytes of FF H will be moved

to the memory locations specified by destination address.

Example: If locations 2000 H through 2005 are non-existent,
the commend:

.M2000,2005,100(Cr)

will cause locations 0100 H through 0105 H to contain FF H.

4. If an invalid character is entered in an address, the
CR Tube will display '?(Cr) (1f).' and await the next
command.

Example: If the user attempts to enter OBAG as the destination
address, the following will be displayed:

M100, 10F, OBAG*

4.2.9. R COMMAND (BAUD RATE SELECT)
The format of the R command is
R rate value

The rate value must be between 1 and 7. See chart below.

NUMBER 1 2 3 4 5 6 7

NORMAL BAUD
RATE

110 150 300 1200 2400 4800 9600

HIGH SPEED
BAUD RATE

880 1200 2400 9600 19,200(38,400|76,800

21

4.2.10 S COMMAND (SUBSTITUTE MEMORY)

The S command is used to display and/or modify the contents
of individual memory locations. It is used as follows:

1% Type an S, followed by the hexadecimal address of the
first memory location you wish to display. Type space.

2. The data from the selected address is displayed,
followed by a dash (-).

3% To modify memory, in the new data followed by a
space or a carriage’return. If you do not wish to
modify the contents of that location, do not type any
data in, but only type -a space or carriage return.

4. If a space was typed in step 3, the next memory
location will be displayed as in step 2. If a
carriage return was typed, operation will be returned
to the CPU O.S.

Example: The contents of the first four bytes of memory is
00 A1 CE FF. You wish to change it to 00 A3 CE 11.
.S0000Sp00Sp Al - A3Sp CE - Sp FF - 1llCr

User entries are unshaded. Display back is shaded.

Error Conditions:
105 If address is greater than 16 bits, or the data to be

substituted is greater than 8 bits, only the last 4
or 2 hex digits respectively are used.

Example: The following sequence is equilvalent to the previous
example:

.SOABOO0OSp 00 - Sp Al - BA3Sp CE - Sp FF - OllCr

2. If an invalid character is encountered, the CR Tube will
immediately display '?(Cr) (1f).' and await the next
command.

22

4.2.11 X COMMAND (EXAMINE AND MODIFY REGISTERS)

The format of the X command is:

X reg ident
X ALL REGSTERS)
Reg ident is a single character specifying a CPU register as
follows:

register

register

register

register

E register

Flag byte, displayed in the form as it is stored
by the instruction PUSH PSW

H register

L register .

H and L registers combined (16 bits)
Program counter (16 bits)

Stack pointer (16 bits)

mMHoQwm >
oQww

Y XX m

Note: The format of the flag byte F is:

A
Ssz0cCcoOPpP1lCc

Sign bit State of carry bit
Zero bit Always 1

Always O State of parity bit
Auxiliary carry bit Always O

Description: The X command is used to display and/or modify
CPU registers. It operates similar to the S command, as follows:

1. Type an X, followed by the register identifier.
2. The data from the selected register is displayed,
followed by a dash (-). Four hexadecimal digits

are displayed for M, P, and S; two hex digits for
the other register identifiers.

25 To modify the register, type in the new data followed
by a space or a carriage return. If you do not wish
to modify the register, type only the space or carriage
return.

23

4. If a space was typed in step 3, the next register in al-
phabetical order is displayed. If carriage return was
typed, the X command is terminated. If a space is typed
register S has been displayed, the command is terminated,
this being the last register identifier in the list.

Example: The A, B, C, and D registers contain AAH, BBH, CCH,
and DDH, respectively. You wish to change the B and C registers
to OOH and FFh, respectively.

XASp AA- Sp BB- 00Sp CC- FFSp DD-Cr

Note: Values set by the X-command will become the actual
contents of the registers after execution of the next GO
command.

The values displayed by the X-command are the contents of
the registers prior to the execution of the last breakpoint
set by the GO command. These displayed values, however,
will reflect any changes of register "contents" made by the
execution of X-commands since this last breakpoint.

Error Conditions:

1. If the data to be substituted is greater than 16
bits for registers M, P, S, or 8 bits for the other
register identifiers, only the last 4 or 2 hex
digits respectively are used.

2. If an invalid register identifier or character is
encountered, the CR Tube will immediately display
'?2(Cr) (Lf).' and await the next command.

4.2.12 E COMMAND (END FILE)

The format of the E command is:
E address
Address is a valid 16 bit memory address.

Description: The E command causes an end-of-file mark and
sixty null characters to be written at the end of a hexa-
decimal output file. The end of file mark is hexadecimal
record of length 00. (See Appendix D). If address is O

or absent, the L command which loads the file will return
control to the CPU 0.S. If address is non-zero, the L command
will transfer control to that memory address immediately after
loading the file.

24

iy

4.2.13 W COMMAND (WRITE MEMORY)

The format of the W command is:
W low address; high address
Low address is a valid 16 bit memory address.

High address is a valid 16 bit memory address equal to or
greater than low address.

Description: The W command is used to output memory locations
low address through high address to the system punch device

in hexadecimal format. A series of W commands may be issued

in order to punch various non-contiguous memory locations onto

a continuous strip of tape.

Any series of W commands should be terminated with an E command
in order to punch a termination character, so that when the tape

is read it will be handled properly.

Example: If memory locations 1 through 3 contain 53F8EC, the
command: .W0001,0003(Cr)

produces:
:0300010053F8ECCS5

(See Appendix D for an explanation of tape format.)

Error Conditions:

1. If low address or high address is greater than 16
bits, only the last 4 hex digits of the argument
will be used as the address.

Example: The command:

WAB0010,100(Cx)
is equivalent to the command:
w0010, 100(Cx)

2. If low address is greater than high address, only
the one byte at low address will be written:

25

Example: The command:

.W1l0,0(Cx)
is equivalent to the command:
.W10,10(Cr)
3. Non-existent memory is equivalent to a string of

bytes all containing FF H.

4. An invalid character in either address will cause
the CR Tube to display '?(Cr) (1f).' and await the
next command.

Example: 1If the user attempts to enter 3Z as low address,
the following will be displayed:

W32?

4.2.14 N COMMAND (NULL PUNCH)

The N command consists only of the letter N followed by a
carriage return and causes 60 null characters to be written
on the punch device.

26

APPENDIX A
—— INSTRUCTION SUMMARY --
This appendix provides a summary of 8080 assembly language
instructions. Abbreviations used are as follows:
A The accumulator (register A)

Ap Bit n of the accumulator contents, where n may have any value
from O to 7 and 0 is the least significant (rightmost) bit.

ADDR Any memory address

Aux. carry The auxiliary carry bit

Carry The carry bit

CODE An operation code

DATA 8 bits (one byte) of data

DATAl6 16 bits (2 bytes) of data

DST Destination register or memory byte

EXP A constant or mathematical expression

INTE The 8080 interrupt enable flip-flop

LABEL Any instruction label

M A memory byte

Parity The parity bit

PC Program Counter

PCH The most significant 8 bits of the program counter
PCL The least significant 8 bits of the program counter
REGM Any register or memory byte

RP A register pair. Legal register pair symbols are:

B for registers B and C

D for registers D and E

H for registers H and L

SP for the 16 bit stack pointer

PSW for condition bits and register A

27

RP1 The first register of register pair RP
RP2 The second register of register pair RP
sign The sign bit
SP The 16-bit stack pointer register
SRC Source register or mémory byte
zero The zero bit
XY The value obtained by concatenating the values X and Y
An optional field enclosed by brackeﬁs
Contents of register or memory byte enclosed by parentheses
_ Replace value on lefthand side of arrow with value on right-
hand side of arrow
CARRY BIT INSTRUCTIONS
Format:
[LABEL:] CODE
CODE DESCRIPTION
STC (carry) 1 Set carry
CMC (carry) Complement carry
(carry)

Condition bits affected: Carry

28

SINGLE REGISTER INSTRUCTIONS

Format:
[LABEL:] INR REGM
[LABEL:] DCR REGM
[LABEL:] CMA
[LABEL:] DAA
Code Description
INR (REGM) (REGM) + 1 Increment register REGM
DCR (REGM) (REGM) - 1 Decrement register REGM
CMA (a) (Aa) Complement accumulator
DAA If (AO—A3)> 9 or (aux. carry = 1, Convert accumulator
(A) (A)+6 contents to form
Then if (A4—A7)> 9 or (carry)= two decimal
1 (a) = (a) + 6 *24 digits
Condition bits affected: INR,DCR : Zero, sign, parity
cMA : None
DAA : Zero, sign, parity, carry, aux. carry
NOP INSTRUCTION
Format:
[LABEL:] NOP
Code Description
NOP e No operation

Condition bits affected: None

29

DATA TRANSFER INSTRUCTIONS

Format:
[LABEL:] MOV
[LABEL:] CODE

NOTE: SRC and DST not both = M

NOTE: RP = B or D

DST, SRC

RP

Code Description
MOV (DST) (SRC) Load register DST from register SRC
STAX ((RP) (n) Store accumulator at memory
location referenced by the specified
register pair
LDAX (B) ((RP)) Load accumulator from memory

location refereced by the specified
register pair

Condition bits affected: None

REGISTER OR MEMORY TO ACCUMULATOR INSTRUCTIONS

Format:
[LABEL:] CODE REGM

Code Description

ADD (A) (A)+ (REGM) Add REGM to accumulator

ADC (a) - (A)+ (REGM) + (carry) Add REGM to accumulator
with carry

SUB (n) (A) - (REGM) Subtract REGM from accumulator

SBB (n) < (A)- (REGM) - (carry) Subtract REGM from accumulator
with borrow

ANA (n) (A) AND (REGM) AND accumulator with REGM

XRA (p) _— (A) XOR (REGM) EXCLUSIVE-OR accumulator
with REGM

Code Description

ORA (A) «— (A) OR (REGM) OR accumulator with REGM
CMP Condition bits set by (A)-(REGM) Compare REGM with
accumulator

Condition bits affected:

ADD, ADC, SUB, SBB: Carry, sign, zero, parity, aux. carry

ANA, XRA, ORA: Sign, zero, parity. Carry is zeroed.

CMP: Carry, sign, zero, parity, aux. carry. Zero set if (A)=(REGM)
Carry reset if (A) £ (REGM)
Carry set if (A)> (REGM)

ROTATE ACCUMULATOR INSTRUCTIONS

Format:
[LABEL:] CODE
Code Description
RLC (carry) ¢ A7, B¢ A ,A, < B7 Set carry =A;, rotate
accumulator left
RRC (carry) &—— By, By ¢« Apy1/Ay é_.AO Set carry =A0, rotate
accumulator right
RAL Apnt+l ¢ Bpr (carry) ¢ Ag,Ag o (carry) Rotate accumulator
left through the carry
A (carry) <«—AQp/A (carry) Rotate accumulator
RAR Roe ’ <—AprBy
n Bii < right through carry

Condition bits affected: Carry

REGISTER PAIR INSTRUCTIONS

Format:
[LABEL:] CODE1 RP
[LABEL:] CODE?2

Note: For PUSH and POP, RP=B,D,H or PSW
For DAD, INX, and DCX, RP=B,D,H, or SP

31

Codel

Description

PUSH ((SP)~1) ¢—(RP1), ((SP)-2) ¢_ (RP2), Save RP on the
(SP) ¢ (SP)-2 stack

RP=A saves accumulator
and condition bits.

POP (RP1)¢ ((SP)+1), (RP2) ¢ ((SP)), Restore RP from

(SP)¢_ (SP)+ the stack

RP=A restores accumulator
and condition bits.

DAD (HL) + (RP) Add RP to the 16-bit
number in H and L.

INX (RP) _ (RP)+1 Increment RP by 1

DCX (RP) ¢ (RP)-1 Decrement RP by 1

Code?2 Description

XCHG (Hlee—>(D), (L) «— (E) Exchange the 16 bit
number in H and L with
that in D and E.

XTHL (L)e—3((SP)) , (H)es((SP)+1) Exchange the last
values saved in the
stack with H and L.

SPHL (SP)e—(H) = (L) Load stack pointer from
H and L.

Condition bits affected:
PUSH, INX, DCX, XCHG, XTHL, SPHL: None

POP

DAD

Format:

Note:

If RP=PSW, all condition bits are restored from the stack, otherwise

none are affected.

IMMEDIATE INSTRUCTIONS

Carry
[LABEL:] LX1
—or-
[(LABEL:] MV1
—or-
(LABEL:] CODE

RP=B,D,H, or SP

RP, DATAl6
REGM, DATA
REGM

32

CODE DESCRIPTION

LXI (RP)¢—— DATA 16 Move 16 bit immediate Data
into RP

MVI (REGM) Move immediate DATA into REGM

ADI (A)e——(A) + DATA Add immediate data to accumulator

ACI (A) ¢ (A) + DATA + (carry) Add immediate data to accumulator
with carry

SUTI (A)e—— (A7) - DATA Subtract immediate data from
accumulator

SBI (A)e——(A) - DATA - (carry) Subtract immediate data from
accumulator with borrow

ANI (AY«——(A) AND DATA AND accumulator with immediate
data

XRI (A) e (A) XOR DATA EXCLUSIVE-OR accumulator with
immediate data

ORI (A)e——(A) OR DATA OR accumulator with immediate
data

CPI Condition bits set by (A)-DATA Compare immediate data with
accumulator

Condition bits affected:

ILXI, MVI: None

ADI, ACI, SUI, SBI: Carry, sign, zero, parity, aux. carry
ANI, XRI, ORI: Zero, sign, parity. Carry is zeroed.
CPI: Carry, sign, zero, parity, aux. carry. Zero is set if (A)= DATA
Carry reset if (A) < DATA
Carry set if (A) > DATA
DIRECT ADDRESSING INSTRUCTIONS
Format:
[LABEL:] CODE ADDR
CODE DESCRIPTION
STA (ADDR) (n) Store accumulator at location
ADDR
LDA (n) (ADDR) Load accumulator from location
ADDR
SHLD (ADDR) ¢« (L), (ADDR+1) (X) Store L and H at ADDR and
ADDR+1
LHLD (L)¢—(ADDR) , (H), (ADDR+1) Load L and H from ADDR and ADDR+1

Condition bits affected: None

33

JUMP INSTRUCTIONS

Format:
[LABEL:] PCHL
[LABEL:] CODE ADDR
CODE DESCRIPTION
PCHL (PC) «—(HL) Jump to location specified by
register H and L

JMP (PC) <___ADDR Jump to location ADDR
JC If (carry) = 1, (PC)¢— ADDR

If (carry) = 0, (PC)e— (PC)+3 Jump to ADDR if carry set
JNC If (carry) = O, (PC)< ADDR

If (carry) =1, (PC)¢ (PC)+3 Jump to ADDR if carry reset
JZ If (zero) = 1, (PC) «__ ADDR

If (zero) = 0, (PC) ¢ (PC)+3 Jump to ADDR of zero set
JNZ If (zero) = 0, (PC) ¢ ADDR

If (zero) =1, (PC) ¢ (PC)+3 Jump to ADDR if zero reset
JP If (sign) = 0, (PC) «— ADDR _

If (sign) = 1, (PC) < (PC)+3 Jump to ADDR if plus
IM If (sign) = 1, (PC) . ADDR

If (sign) = 0, (PC) «— (PC)+3 Jump to ADDR if minus
JPE If (parity)= 1, (PC) <« ADDR

If (parity)= 0, (PC) «—(PC)+3 Jump to ADDR if parity even
JPO If (parity)= 0, (PC) < _ADDR

If (parity)= 1, (PC) (PC)+3 Jump to ADDR is parity odd

Condition bits affected: None

34

CALL INSTRUCTIONS

Format:
[LABEL:] CODE ADDR
CODE DESCRIPTION
CALL ((SP)-1) «-(PCH), ((SP)-2) - (pCL), (SP)<_(SP)+2, (PC) < ADDR
call subroutine and push return
address onto stack
cc If (carry) =1, ((SP)-1) «— (PCH), ((SP)-2) «- (PCL), (SP) <ﬂ.(SP)+2,
(PC)__ ADDR
If (carry) = 0, (PC)_ (PC)+3 Call subroutine if carry set
CNC If (carry) = 0, ((SP)-1 «_ (PCH), ((SP)-2)<«- (PCL), (SP) «- (SP)+2,
(PC) «_ ADDR
If (carry) = 1, (PC) «— (PC)+3 Call subroutine if carry reset
CZ If (zero) = 1, ((SP)-1)- (PCH), ((SP)-2) «_ (PCL), (SP) «- (SP)+2,
(PC) «— ADDR
If (zero) = 0, (PC) «— (PC)+3 Call subroutine if zero set
CNZ If (zero) = 0, ((SP)-1) «— (PCH), ((SP)-2) «— (PCL), (SP) «— (SP)+2,
(PC) < _ ADDR
If (zero) =1, (PC) «— (PC)+3 Call subroutine if zero reset
CP If (sign) = 0, ((SP)-1) «—(PCH), ((SP)-2) ¢«— (PCL), (SP) «— (SP)+2,
(PC) «— ADDR
If (sign) =1, (PC) «- (PC)+3 Call subroutine if sign plus
CcM If (sign) =1, ((SP)-l)«— (PCH), ((SP)-2) <«- (PCL), (SP) <«—(SP)+2,
(PC) «_ ADDR
If (sign) = 0, (PC) «- (PC)+3 Call subroutine if sign minus
CPE If (parity)= 1, ((SP)-1) <. (PCH), ((SP)-2) «— (PCL), (SP) <«—(SP)+2,
(PC) «- ADDR
If (parity)= 0, (PC) «— (PC)+3 Call subroutine if parity even
CPO If (parity)= 0, ((SP)-1) «— (PCH), ((SP)-2) «— (PCL), (SP) <« (SP)+2,
(PC) «— ADDR
If (parity)= 1, (PC) «— (PC)+3 Call subroutine if parity odd

Condition bits affected: None

35

RETURN INSTRUCTIONS

Format:
[LABEL:] CODE
CODE DESCRIPTION
RET (PCL) «— ((SP)), (PCH) <« ((SP)+1); (SP) «—(SP)+2
Return from subroutine
RC If (carry) = 1, (PCH) «— ((SP)), (PCH) <« ((SP)+1), (SP) «— (SP)+2
If (carry) = 0, (PC) - (PC)+3 Return if carry set
RNC If (carry) = 0, (PCL) «— ((SP)), (PCH) <« ((SP)+1), (SP) ¢ (SP)+2
If (carry) =1, (PC) - (PC)+3 Return if carry reset
RZ If (zero) = 1,(PCL) «— ((SP)), (PCH) «— ((SP)+1), (SP) ¢ (SP)+2
If (zero) = 0,(PC) «— (PC)+3 Return if zero set
RNZ If (zero) =0, (PCL) «— ((SP)), (PCH) <«— ((sp)+1), (SP) «— (SP)+2
If (zero) =1, (PC) <«<— (PC)+3 Return if zero set
RM If (sign) = 1, (PCL) «— ((SP)), (PCH) «— ((SP)+1), (SP) «— (SP)+2
If (sign) = 0, (PC) «— (PC) +3 Return if iainus
RP If (sign) = 0, (PCL)<— ((SP)), (PCH) «—((SP)+1), (SP) «— (SP)+2
If (sign) = 1, (PC) « (PC) +3 Return if plus
RPE If (parity)=1, (PCL) «—((SP)), (PCH) «_ ((SP)+1), (SP) < (SP)+2
If (parity)=0, (PC) <«— (PC) _ (PC)+3 Return if parity even
RPO If (parity)=0, (PCL) «— ((SP)), (PCH) «—((SP)+1), (SP) «— (SP)+2
If (parity)=1l, (PC) <«— (PC)+3 Return if parity ¢4

Condition bits affected: None

RST INSTRUCTION

Format:
[LABEL:] RST EXP

Note: 0 EXp 7

CODE DESCRIPTION
RST ((sP)-1) «— (PCH), ((SP)-2) «-(PCL), (SP) «— (SP)+2
(PC) «- 0000000000EXP0O00B Call subroutine at address
by EXP

Condition bits affected: None

36

INTERRUPT FLIP FLOP INSTRUCTIONS

Format:
(LABEL:] CODE
CODE DESCRIPTION
EI (INTE) «—— 1 Enable the interrupt system
DI (INTE) «—— O Disable the interrupt system

Condition bits affected: None

INPUT/OUTPUT INSTRUCTIONS

Format:
[LABEL:] CODE EXP
CODE DESCRIPTION
IN (a) «—— input device Read a byte from device EXP into
the accumulator
ouT output device « (n) Send the accumulator contents to
device EXP
Condition bits affected: None
HLT INSTRUCTION
Format:
[LABEL:] HLT
CODE DESCRIPTION
HLT | — ———m————— Instruction execution halts until
an interrupt occurs.

Condition bits affected: None

37

PSEUDO ~ INSTRUCTIONS

ORG PSEUDO - INSTRUCTION

Format:
ORG EXP
Code Description
ORG LOCATION EXP Set Assembler location
counter to EXP
EQU PSEUDO - INSTRUCTION
Format:
NAME EQU EXP
Code Description
EQU NAME « EXP Assign the value EXP
to the symbol NAME
END PSEUDO - INSTRUCTION
Format:
END
Code Description
END End the assembly.

38

APPENDIX B

——INSTRUCTION EXECUTION TIMES AND BIT PATTERNS--

This appendix summarizes the bit patterns and number of time states
associated with every 8080 CPU instruction.

When using this summary, note the following symbology:

1) DDD represents a destination register. SSS represents a
source register. Both DDD and SSS are interpreted as
follows:

DDD or SSS Interpretation

000 Register B

001 Register C

010 Register D

011 Register E

100 Register H

101 Register L

110 A memory register
111 The accumulator

2) Instruction execution time equals number of time periods

multiplied by the duration of a time period.

A time period may vary from 480 nanosecs to 2 microsec.

When two numbers of time periods are shown (eg. 5/11), it
means that the smaller number of time periods will be required

if a condition is not met, and the larger number of time periods
will be required if the condition is met.

39

Number of Time Periods
17
11/17
11/17
11/17
11/17
11/17
11/17
11/17
11/17
10
5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
11
10
10
10
10
10
10
11
11
11
11
10
10
10
10
13
13
18

10

Do

— O

MNEMONIC
CALL
CC

CNC

CZ

CNZ

()]

CM

CPE
CPO
RET

RC

RNC
RNZ
RPE
RPO
RST

IN

ouT
LXI B
LXI D
LXT H
LXI SP
PUSH B
PUSH D
PUSH H
PUSH A
POP B
POP D
POP H
POP A
STA
LDA
XCHG
XTHL

SPHL
PCHL
DAD B

10
10
10

40

DAD D
DAD H
DAD SP
STAX B
STAX D
LDAX B
ILDAS D
INX B
INX D
INX H
INX SP

Number of Time Periods

10

10
10

10
10
10
10
10
10
10
10
10

Po

MNEMONIC

rlrr2r

MOV

MOV M,r
MOV
HLT
MVI
MVI

r,M

INR

DCR

INR A

DCR A

INR M

DCR M
ADD
ADC

r
r
r
r
r

SUB
SBB
NDA

XRA
ORA
CMP

r
r

ADD M

ADC M

SUB M

SBB M

NDA M

XRA M

ORA M

CMP M
ADI
ACIT
SUTI
SBI
NDI
XRI
ORI
CPI
RLC

RRC

RAL

RAR
JMP
Jgc

JNC
Jz

JNZ
Jp

JM

JPE
“JPO

41

Number of Time Periods

17

17

Do

MNEMONIC

DCX B

DXC D

DCX H

DCX &SP
CMA
STC
CMC

DAA

SHLD
LHLD
ET

DI

NOP

42

APPENDIX C

HEXADECIMAL PROGRAM TAPE FORMAT

The hexadecimal tape format used by the Intecolor® 8001 system is a
modified memory image, blocked into discrete records. Each record
contains record length, record type, memory address, and checksum

information in addition to data. A frame by frame description

is as follows:

Frame O Record Mark, Signals the start of
a record. The ASCII character
colon (":" HEX 3A) is used as the

record mark.

Frames 1,2 Record Length. Two ASCII characters
(0-9,A-F) representing a hexadecimal number
in the range 0 to 'FF'H (O to 255).
This is the count of actual data
bytes in the record type or check-
sum. A record length of O indicates
end of file.

Frames 3 to 6 Load Address. Four ASCII characters
that represent the initial memory
location where the data following
will be loaded. The first data byte
is stored in the location pointed
to by the load address, succeeding
data bytes are loaded into
ascending addresses.

Frames 7,8 Record Type. Two ASCII characters.
Currently all records are type O,
this field is reserved for future

expansion.
Frames 9 to 9+2* (Record Data. Each 8 bit memory word is
Length) - 1 represented by two frames containing

the ASCII characters (0 to 9, A to F)
to represent a hexadecimal value O
to 'FF'H (0 to 255).

43

Frames 9+2* (Record Length) to
9+2* (Record Length) +1

Checksum. The checksum is the
negative of the sum of all 8 bit
bytes in the record since the
record mark (":") evaluated
modulus 256. That is, if you
add together all the 8 bit bytes,
ignoring all carries out of an
8-~bit sum, then add the checksum,
the result is zero.

Example: If memory locations 1 through 3 contain 53F8EC, the format
of the hex file produced when these locations are punched is:

:0300010053F8ECC5

Note: This format is also known as the Intel format.

44

ComBinATIONS ETweEH BLuk & RED (S EACH)
GREEN sTATES (12 EACK)

MuLT PLY BY 4

00 BRIGAT CuAN
ol whiTisH ¢YAN
10 CYANiSH wn(TE
Il BRIGHT wWWITE

&
S Wk
RN a=xL

_—— = -
. . NN
“3‘48 ;‘3"‘8“" vy ny

MM O RDRJEAEWN — O
eTMYA PO g N LWN =
4

o Ww we NN fup

TAKE NUMBER:

TAKE £|

NoT

MdL. BY 2

MG 2: 6 7
dw. g

Mmp |

Db

- TAKE NO: 1001010
Nor A DividE By 2

1000
1000

1001\

00100
1010

1000

oliool0\

	2012_11_27_21_06_38
	2012_11_27_21_06_39
	2012_11_27_21_06_56
	2012_11_27_21_06_57
	2012_11_27_21_06_59
	2012_11_27_21_07_00
	2012_11_27_21_07_01
	2012_11_27_21_07_02
	2012_11_27_21_07_04
	2012_11_27_21_07_05
	2012_11_27_21_07_07
	2012_11_27_21_07_08
	2012_11_27_21_07_09
	2012_11_27_21_07_10
	2012_11_27_21_07_12
	2012_11_27_21_07_13
	2012_11_27_21_07_15
	2012_11_27_21_07_16
	2012_11_27_21_07_17
	2012_11_27_21_07_18
	2012_11_27_21_07_20
	2012_11_27_21_07_21
	2012_11_27_21_07_23
	2012_11_27_21_07_24
	2012_11_27_21_07_25
	2012_11_27_21_07_26
	2012_11_27_21_07_28
	2012_11_27_21_07_29
	2012_11_27_21_07_31
	2012_11_27_21_07_32
	2012_11_27_21_07_33
	2012_11_27_21_07_34
	2012_11_27_21_07_37
	2012_11_27_21_07_38
	2012_11_27_21_07_39
	2012_11_27_21_07_40
	2012_11_27_21_07_42
	2012_11_27_21_07_43
	2012_11_27_21_07_45
	2012_11_27_21_07_46
	2012_11_27_21_07_47
	2012_11_27_21_07_48
	2012_11_27_21_07_50
	2012_11_27_21_07_51
	2012_11_27_21_08_04
	2012_11_27_21_08_05
	2012_11_27_21_08_07
	2012_11_27_21_08_08
	2012_11_27_21_08_10
	2012_11_27_21_08_11
	2012_11_27_21_08_12
	2012_11_27_21_08_13
	2012_11_27_21_08_15
	2012_11_27_21_08_16
	2012_11_27_21_08_18
	2012_11_27_21_08_19
	2012_11_27_21_08_21
	2012_11_27_21_08_22
	2012_11_27_21_08_24
	2012_11_27_21_08_24_000
	2012_11_27_21_08_26
	2012_11_27_21_08_27
	2012_11_27_21_08_29
	2012_11_27_21_08_30
	2012_11_27_21_08_32
	2012_11_27_21_08_32_000
	2012_11_27_21_08_34
	2012_11_27_21_08_35
	2012_11_27_21_08_46
	2012_11_27_21_08_47
	2012_11_27_21_08_49
	2012_11_27_21_08_49_000
	2012_11_27_21_08_51
	2012_11_27_21_08_52
	2012_11_27_21_08_54
	2012_11_27_21_08_55
	2012_11_27_21_08_57
	2012_11_27_21_08_57_000
	2012_11_27_21_08_59
	2012_11_27_21_09_00
	2012_11_27_21_09_02
	2012_11_27_21_09_03
	2012_11_27_21_09_05
	2012_11_27_21_09_05_000
	2012_11_27_21_09_07
	2012_11_27_21_09_08
	2012_11_27_21_09_10
	2012_11_27_21_09_11
	2012_11_27_21_09_41
	2012_11_27_21_09_42
	2012_11_27_21_09_44
	2012_11_27_21_09_45
	2012_11_27_21_09_46
	2012_11_27_21_09_47
	2012_11_27_21_09_49
	2012_11_27_21_09_50
	2012_11_27_21_09_52
	2012_11_27_21_09_53
	2012_11_27_21_10_37
	2012_11_27_21_10_38
	2012_11_27_21_10_40
	2012_11_27_21_10_40_000
	2012_11_27_21_10_42
	2012_11_27_21_10_43
	2012_11_27_21_10_45
	2012_11_27_21_10_46
	2012_11_27_21_10_48
	2012_11_27_21_10_49
	2012_11_27_21_10_51
	2012_11_27_21_10_52
	2012_11_27_21_10_54
	2012_11_27_21_10_55
	2012_11_27_21_10_57
	2012_11_27_21_10_58
	2012_11_27_21_10_59
	2012_11_27_21_11_00
	2012_11_27_21_11_03
	2012_11_27_21_11_04
	2012_11_27_21_11_05
	2012_11_27_21_11_08
	2012_11_27_21_11_09
	2012_11_27_21_11_11
	2012_11_27_21_11_12
	2012_11_27_21_11_14
	2012_11_27_21_11_14_000
	2012_11_27_21_11_16
	2012_11_27_21_11_17
	2012_11_27_21_11_19
	2012_11_27_21_11_20
	2012_11_27_21_11_22
	2012_11_27_21_11_22_000
	2012_11_27_21_11_24
	2012_11_27_21_11_25
	2012_11_27_21_11_27
	2012_11_27_21_11_28
	2012_11_27_21_11_30
	2012_11_27_21_11_30_000
	2012_11_27_21_11_32
	2012_11_27_21_11_33
	2012_11_27_21_11_35
	2012_11_27_21_11_36
	2012_11_27_21_11_38
	2012_11_27_21_11_38_000
	2012_11_27_21_11_40
	2012_11_27_21_11_41
	2012_11_27_21_11_43
	2012_11_27_21_11_44
	2012_11_27_21_11_46
	2012_11_27_21_11_47
	2012_11_27_21_11_48
	2012_11_27_21_11_49
	2012_11_27_21_11_51
	2012_11_27_21_11_52
	2012_11_27_21_11_55
	2012_11_27_21_11_56
	2012_11_27_21_12_07
	2012_11_27_21_12_08
	2012_11_27_21_12_10
	2012_11_27_21_12_11
	2012_11_27_21_12_12
	2012_11_27_21_12_13
	2012_11_27_21_12_16
	2012_11_27_21_12_16_000
	2012_11_27_21_12_18
	2012_11_27_21_12_19
	2012_11_27_21_12_21
	2012_11_27_21_12_22
	2012_11_27_21_12_24
	2012_11_27_21_12_25
	2012_11_27_21_12_26
	2012_11_27_21_12_27
	2012_11_27_21_12_29
	2012_11_27_21_12_30
	2012_11_27_21_12_32
	2012_11_27_21_12_33
	2012_11_27_21_12_48
	2012_11_27_21_12_49
	2012_11_27_21_12_50
	2012_11_27_21_12_51
	2012_11_27_21_12_53
	2012_11_27_21_12_54
	2012_11_27_21_12_56
	2012_11_27_21_12_57
	2012_11_27_21_12_59
	2012_11_27_21_13_00
	2012_11_27_21_13_11
	2012_11_27_21_13_12
	2012_11_27_21_13_14
	2012_11_27_21_13_15
	2012_11_27_21_13_17
	2012_11_27_21_13_18
	2012_11_27_21_13_19
	2012_11_27_21_13_20
	2012_11_27_21_13_22
	2012_11_27_21_13_23
	2012_11_27_21_13_25
	2012_11_27_21_13_26
	2012_11_27_21_13_28
	2012_11_27_21_13_28_000
	2012_11_27_21_13_30
	2012_11_27_21_13_31
	2012_11_27_21_13_33
	2012_11_27_21_13_34
	2012_11_27_21_13_36
	2012_11_27_21_13_36_000
	2012_11_27_21_13_38
	2012_11_27_21_13_39
	2012_11_27_21_13_41
	2012_11_27_21_13_42
	2012_11_27_21_13_44
	2012_11_27_21_13_45
	2012_11_27_21_14_06
	2012_11_27_21_14_07
	2012_11_27_21_14_08
	2012_11_27_21_14_09
	2012_11_27_21_14_11
	2012_11_27_21_14_12
	2012_11_27_21_14_14
	2012_11_27_21_14_15
	2012_11_27_21_14_17
	2012_11_27_21_14_17_000
	2012_11_27_21_14_33
	2012_11_27_21_14_34
	2012_11_27_21_14_36
	2012_11_27_21_14_37
	2012_11_27_21_14_39
	2012_11_27_21_14_39_000
	2012_11_27_21_14_41
	2012_11_27_21_14_42
	2012_11_27_21_15_15
	2012_11_27_21_15_16
	2012_11_27_21_15_18
	2012_11_27_21_15_19
	2012_11_27_21_15_21
	2012_11_27_21_15_22
	2012_11_27_21_15_23
	2012_11_27_21_15_24
	2012_11_27_21_15_26
	2012_11_27_21_15_27
	2012_11_27_21_15_56
	2012_11_27_21_15_57
	2012_11_27_21_15_58
	2012_11_27_21_15_59
	2012_11_27_21_16_01
	2012_11_27_21_16_02
	2012_11_27_21_16_04
	2012_11_27_21_16_05
	2012_11_27_21_16_07
	2012_11_27_21_16_08
	2012_11_27_21_16_10
	2012_11_27_21_16_11
	2012_11_27_21_16_14
	2012_11_27_21_16_14_000
	2012_11_27_21_16_16
	2012_11_27_21_16_17
	2012_11_27_21_16_19
	2012_11_27_21_16_20
	2012_11_27_21_16_21
	2012_11_27_21_16_22
	2012_11_27_21_16_24
	2012_11_27_21_16_25
	2012_11_27_21_16_27
	2012_11_27_21_16_28

