Proposed Automatic Calculating Machine
Howard Aiken

Aiken’s formal proposal exists in at least three copies, all of which arve in the Harvard
University Archives. One is among the university’s presidential papers for 1938, in a
Sfile marked “Physics.” The last page is dated “Jan. 17, 1938" and signed “Howard
Aiken.” This document was formally transmitted to President J. B. Conant on 7 February
1938 by Professor Harry Mimno, whose covering letter to Conant mentions that Aiken
had already made contact with IBM and that the two IBM engineers who had studied
the proposal had found “the fundamental design” to be “practical.” Clearly, the proposal
had been written and submitted to IBM before 7 February 1938. On the first page of
this copy of the proposal, someone has noted: “This was wrilten in 1938 before
construction was started.” A second copy, in the files of the School of Engineering, is
signed “Howard H. Aiken” in ink and is dated, in Aiken’s hand, “January 17,
1938 "—the same date that is on the president’s copy, and appavently the day on which
Aiken officially presented this document to the dean. The thivd copy, in the Aiken files,
is daled in pencil, in a hand that has not been identified, “November 1937.” The text
is identical in all three copies, which were reproduced by some process. (They are not
carbon copies of a typewritten document.)

There is evidence that the dale of composition of Aiken’s proposal (as opposed to the
date of formal transmission to the president and the dean) is 1937. Reference 8 at the
end of chapter 2 of the Manual of Operation for Mark I reads “H. H. Aiken, Proposed
Automatic Caleulating Machine (1937), p. 18, (privately distributed).” Since there ave
several refevences to IBM technology, it would appear that this proposal was prepared
Sor Aiken’s first contacl with IBM: his meeting with James Wares Bryce, IBMs chief
engineer, which took place in early November 1937, It does not seem likely that Aiken
would have veferved to IBM and ils machines if this proposal had been writien for his
unfruitful meeting with George Chase of the Monroe Calculating Machines Company
on 22 April 1937. (For additional evidence to support the date 1937, probably
November, see Portrait.)

This landmark text, published in 1EEE Spectrum in 1964, has been veprinted from
that journal in the three editions of Brian Randell’s sowrce book on the antecedents and
early history of the computer, The Origins of Digital Computers—Selected Papers
(third edition: Springer-Verlag, 1975). It has also been veprinted in at least one other
anthology of writings concerning the compuler,

The oviginal text, reprinted heve, differs in some features from the version printed in
IEEE Spectrum and reprinted in Randell’s anthology, which contains a number of
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alierations. For example, some of A iken’s mentions of “I nternational Business Machines”
were changed to “IBM machines.” “International Business Machines Company,” how-
ever, was kept as Aiken wrole it, as was Aiken’s “MacLauren” for the name of the
Scoltish mathematician Colin Maclawrin. Also altered were the parr.-gmphing and
numbering of some sections. One section in which many alterations were made is titled
“Present Conceplion of the ;l;‘;pm'utm‘." In the edited version, the numbering and
paragra phing were altered, and the n‘ispm;.‘ed and numbered lists lost their numbers and
were converted into paragraphs. The text printed below reproduces Aiken’s original

document word for word.

1. Historical Instoduction

The desire to economize time and mental effort in arithmetical com-
putations, and to eliminate human liability to error, is probably as old
as the science of arithmetic itself. This desire has led to the design and
construction of a variety of aids to calculation, beginning with groups
of small objects, such as pebbles, first used loosely, later as counters on
ruled boards, and later still as beads mounted on wires fixed in a
frame, as in the abacus. This instrument was probably invented by the
Semitic races and later adopted in India, whence it spread westward
throughout Europe and eastward to China and Japan.

After the development of the abacus no further advances were made
until John Napier devised his numbering rods, or Napier’s Bones, in
1617. Various forms of the Bones appeared, some approaching the
beginning of mechanical computation, but it was not until 1642 that
Blaise Pascal gave us the first mechanical claculating machine in the
sense that the term is used today. The application of his machine was
restricted to addition and subtraction, but in 1666 Samuel Moreland
adapted it to multiplication by repeated additions.

The next advance was made by Leibnitz who conceived a multiply-
ing machine in 1671 and finished its construction in 1694. In the
process of designing this machine Leibnitz invented two impor-
tant devices which still occur as components of modern calculating
machines today; the stepped reckoner, and the pin wheel.

Meanwhile, following the invention of logarithms by Napier, the
slide rule was being developed by Oughtred, John Brown, Coggeshall,
Everard, and others. Owing to its low cost and ease of construction,
the slide rule received wide recognition from scientific men as early as
1700. Further development has continued up to the present time, with
ever increasing application to the solution of scientific problems
requiring an accuracy of not more than three or four significant
figures, and when the total bulk of the computation is not too great.
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Particularly in engineering design has the slide rule proved to be «

invaluable instrument. ‘ A

; Though the slide rule was widely accepted, at no time, however, did

it act as a deterrent to the development of the more précise metl,locls
of mechanical computation. Thus we find the names of some of th
greatest mathematicians and physicists of all time associated with thz
cle\'e‘lc(;pmjn[ of calculating machinery. Naturally enough, these men
considered mechanical calculation largely fr i R
in an effort to deviseLlnel:lll?suc::‘l:;ii:i:cor;d[r e“"‘”“’n it
. ancement. A notable
exception was Pascal who invented his calculating machine for the
purpose o.i' assisting his father in computations with sums of mone
Despite this widespread scientific interest, the development of moderfl.
Cfilculating machinery proceeded slowly until the growth of commer-
cial enterprises and the increasing complexity 01 accountiﬁ made
mec}?a.nical computation an economic necessity. Thus the ideag% 0["11;1:;
phys‘lusrs and mathematicians, who foresaw the possibilities aﬁd rave
Fhe fundamentals, have been turned to excellent purposes .but di?i"e]t
ing greatly from those for which they were originally intez,lclecl

Pe\f czt!culating machines have been designed SI.I'iC{.l}’ for appl;cation
to scientific investigations, the notable exceptions being those of
Charl-.f:s Babbage and others who followed him. In 1812 Bal;b'lre
C(J[]Cf:l\f(':d the idea of a calculating machine of a higher type than th(oie
previously constructed, to be used for ca]cular.in{_{ and printing tables
or 1‘nathematical functions. This machine worked by the method 0‘1’
diﬂerem‘.cs: and was known as difference engine. Babbage’s first model
was mzl(l(.: in 1822, and in 1823 the construction of thc machi.ne was
begun \«f{th the aid of a grant from the British Government 'I']‘lc::
construction was continued until 1833 when state aid was with(dh"iwn
after an hcxpcnditure of nearly £ 20,000. At the present Lime‘[he
111;1chn‘1(-,: is in the collection of the Science Museum, South K;;nsingl('m
3 Irn’ 195.4 ‘George S{:Iz‘cut.z of Stockholm read the description of Bab-
";1:{;1?”:1[‘1\:]?1131e:iiult):l. z‘:n(loirfl‘rted‘ l.lTLi C(JI‘IS[]‘[ECFiQ]] of a similar
completed and utilized f't;r fﬁ:ril:}{ntljmn'[dl Fm"'L <y ""“_:h"“'"‘ ol
lowed several other I(liﬂ'brenlt: el:;i':lelilzl‘(l;:::;ll]:"illtifilIl Fabllcs. l h'en o
Martin Wiberg in Sweden, G. B L(‘ Gt i St E}Eb]gnul )
e Fm":c s PC]‘CV,I .l(”. ar-l ant in l.h{!' 1Uml.t:d States, Leon
e i _udgate in Ireland. The last two, however,

er consta ucted.

After abandoning the difference engine, Babbage devoted his
energy to the design and construction of an analytical en rin-; f [ H
higher powers than the difference engine. This 1'I'l’l('h.' 3 2 i

s machine, intended to
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evaluate any algebraic formulae by the method of differences, was
never completed, being too ambitious for the time. It pointed the way,
however, to the modern punched card type of calculating machine
since it was intended to use for its control perforated cards similar to
those used in the Jacquard loom.

Since the time of Babbage the development of calculating machinery
has continued at an increasing rate. Key driven calculators designed
for single arithmetical operations such as addition, subtraction, multi-
plication, and division, have been brought to a high degree of per-
fection. In large commercial enterprizes, however, the volume of
accounting work is so great that these machines are no longer ade-
quate in scope.

Hollerith, therefore, returned to the punched card formerly used
by Babbage and with it laid the ground work for the development of
tabulating, counting, sorting, and arithmetical machinery such as is
now widely utilized n industry. The development of electrical appa-
ratus and technique found application in these machines as manu-
factured by the [nternational Business Machines Company, until today
many of the things Babbage wished to accomplish are being done
daily in the accounting offices of industrial enterprizes all over the
world.

As previously stated, these machines are all designed with a view to
special applications to accounting. In every casc¢ they are concerned
with the four fundamental operations of arithmetic, and not with
operations of algebraic character. Their existence, however, makes
possible the construction of an automatic calculating machine specially
designed for the purposes of the mathematical sciences.

II. The Need for More Powerful Calculating Methods in the
Mathematical and Physical Sciences

It has already been indicated that the need for mechanical assistance
in computation has been felt from the beginning of science, but at the
present time this need is greater than ever before. The intensive
development of the mathematical and physical sciences in recent years
has included the definition of many new and useful functions nearly
all of which are defined by infinite series or other infinite processes.
Most of these are inadequately tabulated and their application to
scientific problems is thereby retarded.

The increased accuracy of physical measurement has made neces-

sary more accurate computation in physical theory, and experience has
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showrf that small differences between computed theoretical and
experl'mental results may lead to the discovery of a new physical effect
sometimes of the greatest scientific and industrial importance. ‘

Many of the most recent scientific developments, including such
devices as the thermionic vacuum tube, are based on nonlinear effects
Onlyl too often the differential equations designed to represent tht“i{;
ph}.-'SlC’d] effects correspond to no previously studied forms and thl:lS
defy ‘all methods available for their i11tegra£i0n. The only n,"lethods of
solut101'1 available in such cases are expansions in infinite series e.md
gumerlcal integration by iterative methods. Both these methods
111\’(3[\*& enormous amounts of computational labor.

The present development of theoretical physics through Wave

Met?l1a111cs is based entirely on mathematical concepts and clearly
indicates that the future of the physical sciences rests in mathemati}-
ca]. reasoning directed by experiment. At the present time there
exist problems beyond our ability to solve, not because of theoreti-
cal difﬁqt]ties, but because of insufficient means of meﬁhanical
computation.
. In some fields of investigation in the physical sciences, as for instance
in the study of the ionosphere, the mathematical expressions required
to represent the phenomena are too long and complicated to write in
several lines across a printed page, yet the numerical investigation of
su‘ch expressions is an absolute necessity to our study of the physics
of the upper atmosphere, and on this type of research 1‘est*~;ythe
future of radio communication and television. v

The roots of transcendental equations and algebraic equations above
the ”'.ef:(md degree can be obtained only by successive approximations
and 1[‘21n accuracy of ten significant figures is required the numericai
labor in many cases may be all but prohibitive.

These are but a few examples of the computational difficulties with
which the physical and mathematical sciences are faced, and to the;;e
may‘b.e added many others taken from astronomy, the theor ;1{“
relativity, and even the rapidly growing science of mar.hematical cz()n-
omy. .AH these computational difficulties can be removed by the design
of suitable automatic calculating machinery. % 3

1:;’. Pc'!z'nts of Difference between Punched Card Accounting
achinery and Calculating Machinery as Required in the Sciences

The featur i

e =Y o - e 1 ]

- atures to be incorporated in calculating machinery specially

1 x ' . - ) . . = i :
gned for rapid work on scientific problems, and not to be found
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in calculating machines as manufactured for accounting purposes, are
the following.

1. Ordinary accounting machines are concerned entirely with arith-
metical problems, while machines designed for mathematical purposes
must be able to handle both positive and negative quantities.

9. For mathematical purposes, calculating machinery should be able
to supply and utilize a wide variety of transcendental functions, as the
trigonometric functions; elliptic, Bessel, and probability functions; and
many others. Fortunately not all these functions occur in a single
computation; therefore a means of changing from one function to
another may be designed and the proper flexibility provided.

3. Most of the computations of mathematics, as the calculation of a
function by series, the evaluation of a formula, the solution of a
differential equation by numerical integration, etc., consist of repetitive
processes. Once a process is established it may continue indefinitely
until the range of the independent variables is covered, and usually
the range of the independent variables may be covered by successive
equal steps. For this reason calculating machinery designed for appli-
cation to the mathematical sciences should be fully automatic in its
operation once a process is established.

4. Existing calculating machinery is capable of calculating ¢(x) as a
function of x by steps. Thus, if x is defined in the interval a<x<b and
o(x) is obtained from x by a series of arithmetical operations, the
existing procedure is to compute step (1) for all values of x in the
interval a<x<b. Then step (2) 1s accomplished for all values of the
result of step (1), and so on until ¢(x) is reached. This process, however,
is the reverse of that required in many mathematical operations. Cal-
culating machinery designed for application to the mathematical sci-
ences should be capable of computing lines instead of columns, for
very often, as in the numerical solution of a differential equation, the
computation of the second value in the computed table of a function
depends on the preceding value or values.

Fundamentally, these four features are all that are required to con-
vert existing punched card calculating machines such as those manu-
factured by the International Business Machine Company into
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machines specially adapted to scientific purposes. Because of the
greater complexity of scientific problems as compared to accounting
problems, the number of arithmetical elements involved would hav;i
to be greatly increased.

IV. The Mathematical Operations which should be Included

The mathematical operations which should be included in an auto-
matic calculating machine are:

1. The fundamental operations of arithmetic
a. addition
b. subtraction
¢. multiplication
d. division
2. Positive and negative numbers
3. Parentheses and brackets
a.()+()
BRIE@EE ()] - [()+ ()]
c. Etc.
4. Powers of numbers
a. Integral
b. Fractional
5. Logarithms

a. Base 10
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b. All other bases by multiplication
6. Antilogarithms or exponential functions
a. Base 10
b. Other bases
7. Trigonometric functions
8. Anti-trigonometric functions
9. Hyperbolic functions
10. Anti-hyperbolic functions
11. Superior transcendentals
a. Probability integral
b. Elliptic function
c. Bessel function

With the aid of these functions the processes to be carried out should
be:

12. Evaluation of formulae and tabulation of results
13. Computation of series

a. Finite

b. Infinite
14. Determination of the real roots of equations

I5. Solution of ordinary differential equations of the first and second
order
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16. Numerical integration of empirical data
17. Numerical differentiation of empirical data
V. The Mathematical Means of Accomplishing the Operations.

The purpose of this section is to describe the mathematical processes
which may be made the basis of design of an automatic calculating
machine. In the case of every operation considered it should be noted
that the formulae suggested reduce the operation to a repetitive
sequence.

1. The fundamental arithmetical operations require no comment, as
they are already available, save that all the other operations must
eventually be reduced to these in order that a mechanical device may
be utilized.

9. Fortunately the algebra of positive and negative signs is extremely
simple. In any case only two possibilities are offered. Later on it will
be shown that these signs may be treated as numbers for the purposes
of mechanical calculation.

The use of parentheses and brackets in writing a formula requires
that the computation must proceed piecewise. Thus, a portion of the
result is obtained and must be held pending the determination of some
other portion, and so on. This means that a calculating machine must
be equipped with means of temporarily storing numbers until they are
required for further use. Such means are available in counters.

4. Integral powers of numbers may be obtained by successive multi-
plication, and fractional powers by the method of iteration. Thus, if it
is required to find 5',

y=fx)=x*-5 (a)
and
/(xil—l)
X, = Xp-1 — — ]J
I j ,(xri-l) ( )
Xy =X, — JtLI__F) (L)

3y
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Let

Xo=2
SIS S |

X =§+E=-i§ (e)
42 bHx 144

xg=%+m= 1.166 + 0.544

which is the cube root of 5 to four significant figures. In general the
rth root of @ is given by the iteration of the expression:

1
X, = [1 = T]Xﬂ_l + —9_ (F)

e}

Finally, if r is not an integer recourse may be had to the mechanical
table of logarithms later to be described.

5. To supply a mechanical device with a complete mathematical func-
tion over a wide range of values would require an impossible amount
of apparatus. To avoid this difficulty several artifices may be employed.
In the case of logarithms, let it be required to find

y =logo x (a)
Then
x=10’

" ](};H%H_;W#LU;._ (b)
where a, b, ¢, . . . are all integers. If x is restricted to have values no

larger than 10', then
0<a,b,c,..£9 ()
Equation (b) may then be written

1
x=10° x (1010 ) x (10700 )° x (107009 ) x - (d)
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We may now form a table consisting of 100 numbers:

0 1 2 3 4 5
10 1 10.000 100.00 1000.0
1010 1 1.2589 1.585 1.995
1190 1 1.0238 1.0471 1.0715
1ovtooe ] 1.0023 1.0046 1.006

10 1/ 10000

giving the integral powers from 0 to 9 inclusive of 10, 10", 101,
etc. Then, if it is required to find log (2104, for instance, choose the
largest number in the first row which, when divided into 2104, still
leaves a result greater than unity. Thus,

2.104
=1.04----3
1.995
g4 1.006 9
Wi
1.006
—=1.000—-—--3
1.006
Hence,
10g|g]2104 = 3.323, ((_*)

this is correct to the last figure.

Thus it is seen that the computation of 10 significant figure loga-
rithms may be reduced to ten discriminations, each in a field of ten,
and eight divisions; eight because the first consists of moving the
decimal point, a process as effortless in mechanical as in mental com-
putation, and the last division need not be carried out.

6. The process of finding anti-logarithms may be reduced to a reversal
of the logarithmic process. Thus, if
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y = 10" (a)

then

y=10""16* 150" (b)
— (10) x (10T )" x (1070) .. ©

and repetitive discrimination and multiplication suffices.

7. The trigonometric functions most commonly used are the sine and
cosine, and from these all other trigonometric functions may be com-
puted easily. Either of these functions may be computed i'r.om the
other, but in the expansion of Fourier series both sines and cosines :‘n'e
required. Therefore, it seems worth while to consider mechanical
means of computing both the functions.

On expanding sin(a + h) by MacLauren’s Theorem,

cost sina , cosa , Sima

sin(a+h) = sina +—]— h— 5 h™— e h + 7 h = (a)
If now,

B=a+h (b)
and

-n/2<0<n/2 (©)
twenty values of @ may be chosen, as

a=7m/2, 9n/20, 4n/5, .... -9/ 20 (d)
Then the maximum value of & is

h=mn/20=0.15729... (e)

and ten terms of the series suffice for determining sin® significant
figures, at most. On the average approximately five terms are
sufficient. The process of computing sines is thus reduced to discrimi-
nations of one number in a field of twenty, and the computation of a
series of at most ten terms.

The process for computing the cosine is exactly the same, and from
these all other trigonometric functions may be determined arithmet-
cally by

cscB = 1/5in0 (f)
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secB = 1/cosB (g)
tan® = sinB/cosb (h)

Thus a field of 200 numbers of sufficient to supply all trigonometric
functions.

8. The inverse trigonometric functions may also be determined by
MacLauren’s Theorem, but since sin'6 and tan'® occur more often
than any other inverse trigonometric function, these should be
selected and any others computed from them.

9. Similar methods might be applied to the computation of the hyper-
bolic functions, but it is questionable if special apparatus should be
initially installed for their determination since the hyperbolic functions
may all be defined in terms of exponentials computable from the
logarithmic device already suggested.

10. Similar comments apply to the inverse hyperbolic functions.

11. A great many functions may be similarly treated, and if the design
of the automatic calculating machine proceeds so that a given device
can be changed from one function to another rapidly, all such func-
tions may be included in the scope of the machine. Means of accom-
plishing this will be suggested later.

12. Given a suitable supply of transcendental functions, the evaluation
of formulae is reduced to arithmetic. If a formula is to be evaluated
for a wide range of the independent variable, the process becomes
repetitive. Means for accomplishing this will be discussed later.

13. The computation of closed series such as

Y=ay+ax + as x* + as x* (a)
1s most easily accomplished by the sequence:

Qs

ayX

asx + a,

A3X® + ayx (b)
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asx? + asx + a,
asx® + asx* + a\x
asx* + asx* + a\x +ap =y

In the case of infinite series the computation may be reduced to
successive multiplications and additions. Thus, if

y=ap+a X +asx*+a; DIk (c)
=ay

5]

+—X-a
@ 0

tlo
+—Xx-dy
)

as Ay @

+—Xx-—X —X"4
@ an an Y
ay as o a
— X — X-— X-—X-Q (d)
(s [£2] ay ay
= P
and
= Ay
+ /"’1 X - Au

+A-_5A\"A].\"An

+Agx - Aax - Ag

+Ayx-Asx-Asgx-Ayx-Ag (e)
where
Ay=ap, A, =a,/ay, Ay =as/ay; ... ()

Thus each term of the series is obtained from the last through multi-
plication by a coefficient and the value of the independent variable.

14. Any mechanical device that can evaluate formulae can also deter-
mine the real roots of algebraic and transcendental equations provided
only that in the evaluation of the formulae the successive values of the
independent variable are the successive values of the dependent vari-
able computed; thus, consider
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x +logex=1/2 (a)

given that x is in the neighborhood of 1/2. A succession of eleven
approximations suffices to give

x = 0.672384 (b)
Or, let the equation be the famous cubic of Wallis,
X¥-2x-5=0 (c)
the iterative equation is
‘xlj’l‘—l i err-—l T 5
Xy =Xy-1— ST T (d)
3x2, -2

Three approximations give
x = 2.09455148... (e)

The root of this equation has been computed to 150 significant figures.
Note that again the process is purely repetitive after being started.

15. The solution of ordinary differential equations of any order can
usually be accomplished to any degree of accuracy by expansion into
infinite series by MacLauren’s Theorem for any specified boundary
demands. Under certain circumstances the series may be rapidly con-
vergent and the method offers excellent means for numerical solution.

However, when the equation has complicated functions of x as coeffi-
cients of the various derivatives of y, and the independent variable itself
occurs in complicated functions, the various successive derivatives nec-
essary to the series expansion may involve a prohibitive amount of
labor. For such cases various methods of numerical solution have been
devised, such as those of Adams, Runge-Kutta, and others.

Of these, the method of Runge-Kutta is probably best adapted to
mechanical computation because the method of solution depends en-
tirely on the evaluation of a repetitive sequence. Thus, if

dy
dx = ®)) (a)
and

K, =f (xo , Yo JAxX
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2 A\' K]
K:=f ‘\'0-’,-—2—,_\'(.-!-? Ax (b)
Ax K,
Kl‘ =f Xo + '? » J"!F + -()_- Ax

Ky =f(xo + Ax, yo + K3) Ax
Then,

A‘\‘ = {xu + A-\:r }"II o K") Ax

and
yi=Yo+ Ay
X =xp+ Ax (L)

The process may now be repeated to find xp, yo, and so on. The
inherent error of this process is of the order of Ax™; hence, if Ax is taken
as 0.1, the solution will be correct to the fourth place of decimals, and
doubtful in the fifth.

The method can be applied to simultaneous equations of the first
order, and hence to second order equations.

Since the method involves nothing other than the evaluation of
formulae, a mechanical device suitable for such evaluation is prepared
to perform this type of numerical integration.

16. The numerical integration of empirical data may be carried out by
the rules of Simpson, Weddle, Gauss, and others. All these rules
involve sums of successive values of y multiplied by specified numerical
coefficients. Hence the only new mechanical component involved in a
means of mechanically introducing a list of numbers. Means of accom-
plishing this will be discussed later.

17. Numerical differentiation of empirical data is best accomplished
by means of a difference formula. Most experimental observations are
of such an accuracy that fifth differences may be neglected by taking
observations sufficiently close together. If, then, all differences above
the fifth may be neglected, the process of numerical differentiation
may be carried out by a fifth difference engine such as originally
designed by Babbage. Such a device can, however, be assembled from
standard addition-subtraction machines with but a few changes. The
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differentiating apparatus would also be applicable to many other prob-
]ems.‘ In fact, most of the problems already discussed may under
certain circumstances be solved by application of difference formulae.

VI. Mechanical Considerations

In the last section it was shown that even complicated mathematical
operations may be reduced to a repetitive process involving the fund-
manetal rules of arithmetic. At the present time the calculating
machine of the International Business Machines Company are (‘.apab]‘é
of carrying out such operations as:

A+B=F

A-B=F

AB + C = F

AB+C+D=F (a)
A+B+C=F

f=p-c=r

4 +B—-C=F

In these equations, 4, B, C, D are tabulations of numbers on punched
cards, and £ the result, is also obtained through punched cards. The
F cards may then be put through another machine and printed or
utilized as A4, B, . . . cards in another computation.

Changing a given machine from any of the operations (a) to any
other is accomplished by means of electrical wiring on a plug board.
In_ the hands of a skilled operator such changes can be made in a few
minutes.

No further effort will be made here to describe the mechanism of
the International Business Machines. Suffice it to say that all the
op.er‘ations described in the last section can be accomplished by these
emstl.ng machines when equipped with suitable controls, and assem-
bled. in sufficient number. The whole problem of design of an auto-
matic calculating machine suitable for mathematical operations is thus
reduced to a problem of suitable control design, and even this problem
has been solved for simple arithmetical operations.

The main features of the specialized controls are machine switching
and replacement of the punched cards by continuous perforated tapes.
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In order that the switching sequence can be changed quickly to any
possible sequence the switching mechanism should itself utilize a paper
tape control in which mathematical formulae may be represented by

suitably disposed perforations.
VII. Present Conception of the Apparatus

At present the automatic calculator is visualized as a switchboard on
which are mounted various pieces of calculating machine apparatus.
Fach panel of the switchboard is given over to definite mathematical

operations.

1. International Business Machines utilize two electric potentials, 120
a.c. for motor operation, and 32 volts d.c. for relay operation, etc. A
main power supply panel would have to be provided including control
for a 110 volt, a.c./32 volt d.c. motor generator and adequate fuse
protection for all circuits.

9. Master Control Panel: The purpose of this control is to route the
flow of numbers through the machines and to start operation. The

processes involved are
a. Deliver the number in position (x) to position (y)
b. Start the operation for which position (y) is intended.

The master control must itself be subject to interlocking to prevent the
attempt to remove a number before its value is determined, or to .begi‘n
a second operation in position (y) before a previous operation 1s
finished.

It would be desirable to have four such master controls, each capable
of controlling the entire machine or any of its parts. Thus, for compli-
cated problems the entire resources could be thrown together; for
simple problems, fewer resources are required and several problems
could be in progress at the same time.

3. The progress of the independent variable in any calculation would
go forward by equal steps subject to manual readjustment for change
in the increment. The easiest way to obtain such an arithmetical
sequence is to supply a first value, xo, to an adding machine, together
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with the increment Ax. Then successive additions of Ax will give the
sequence desired.
There should be four such independent variable devices in order to

a. Calculate formulae involving four variables,
b. Operate four master controls independently.

4. Certain constants: many mathematical formulae involve certain
constants such as €, «, log)y €, and so forth. These constants should be
permanently installed and available at all times.

5. Mathematical formulae nearly always involve constant quantities. In
the computation of a formula as a function of an independent variable
these constants are used over and over again. Hence the machine
should be supplied with 24 adjustable number positions for these
constants.

6. In the evaluation of infinite series the number 24 might be greatly
exceeded. To take care of this case it should be possible to introduce
specific values by means of a perforated tape, the successive values
being supplied by moving the tape ahead one position. Two such
devices should be supplied.

7. The introduction of empirical data for non-repetitive operations can
be accomplished best by standard punched card magazine feed. One
such device should be supplied.

8. At various stages of a computation involving parentheses and brack-
ets it may be necessary to hold a part of the result pending the
computation of some other part. If results are held in the calculating
unit these elements are not available for carrying out succeeding steps.
Therefore it is necessary that numbers may be removed from the
calculating units and temporarily stored in storage positions. Twelve
such positions should be available.

9. The fundamental operations of arithmetic may be carried on three
machines.

a. Addition and subtraction
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c¢. Multiplication
d. Division.
Four units of each should be supplied in addition to those directly
associated with the transcendental functions.
The permanently installed mathematical functions should include
10. Logarithms.
11. Anti-logarithms
12. Sines
13. Cosines.
14. Inverse Sines.

15. Inverse tangents.

16. Two units for MacLauren Series expansion of other functions as
needed.

17. In order to carry out the process of differentiation and integration
on empirical data, adding and subtracting accumulators should be
provided sufficient to compute out to fifth differences.

18. All results should be printed, punched in paper tapes, or in cards
at will. Final results would be printed. Intermediate results would be
punched in preparation for further calculations.

The above is a rough outline of the apparatus required, and it is
believed that this apparatus, controlled by automatic switching, would
care for most of the problems encountered.

VIII. Probable Speed of Computation

An idea of the speed attained by the International Business Machines
can be had from the following tabulation of multiplication in which
9 x 8 refers to the multiplication of an 8 significant figure number by
a 2 significant figure number, zeros not counted.
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Products per hour

2x8 1500
3x8 1285
4x8 1125
5x8 1000
6x8 900
7x8 818
8x8 750

In the computation of 10 place logarithms the average speed would
be about 90 per hour. If all the 10 place logarithms of the natural
numbers from 1000 to 100,000 were required, the time of computation
would be approximately 1100 hours, or 50 days, allowing no time for
addition or printing. This is justified since these operations are
extremely rapid and can be carried out during the multiplying time.

IX. Suggested Accuracy

Ten significant figures has been used in the above examples. If all
numbers were to be given to this accuracy it would be necessary to
provide 23 number positions on most of the computing components,
10 to the left of the decimal point, 12 to the right, and one for plus

and minus. Of the twelve to the right two would be guard places and
thrown away.

X. Ease of Publication of Results

As already mentioned, all computed results would be printed in tabu-
lar form. By means of photo-lithography these results could be printed
Flirectly without type setting or proof reading. Not only does this
indicate a great saving in the publishing of mathematical functions,
but it also eliminates many possibilities of error.



