
ON COMPUTABLE NUMBERS,

WITH AN APPLICATION TO THE

ENTSCHEIDUNGSPROBLEM

By A. M. TURING

[Received 28 May, 1936.—Read 12 November, 1936.]

1. Computing machines.
2. Definitions.

Automatic machines.
Computing machines.
Circle and circle-free numbers.
Computable sequences and numbers.

3. Examples of computing machines.
4. Abbreviated tables

Further examples.

5. Enumeration of computable sequences.
6. The universal computing machine.
7. Detailed description of the universal machine.
8. Application of the diagonal process.
9. The extent of the computable numbers.
10. Examples of large classes of numbers which are computable.
11. Application to the Entscheidungsproblem.
APPENDIX

ON COMPUTABLE NUMBERS, WITH AN APPLICATION TO THE
ENTSCHEIDUNGSPROBLEM.
A CORRECTION By A. M. Turing

Endnotes

The “computable” numbers may be described briefly as the real numbers whose
expressions as a decimal are calculable by finite means. Although the subject of this
paper is ostensibly the computable numbers, it is almost equally easy to define and
investigate computable functions of an integral variable or a real or computable
variable, computable predicates, and so forth. The fundamental problems involved
are, however, the same in each case, and I have chosen the computable numbers for
explicit treatment as involving the least cumbrous technique. I hope shortly to give
an account of the relations of the computable numbers, functions, and so forth to
one another. This will include a development of the theory of functions of a real
variable expressed in terms of computable numbers. According to my definition, a
number is computable if its decimal can be written down by a machine.

In §§ 9, 10 I give some arguments with the intention of showing that the
computable numbers include all numbers which could naturally be regarded as
computable. In particular, I show that certain large classes of numbers are
computable. They include, for instance, the real parts of all algebraic numbers, the

real parts of the zeros of the Bessel functions, the numbers X, e, etc. The
computable numbers do not, however, include all definable numbers, and an
example is given of a definable number which is not computable.

Although the class of computable numbers is so great, and in many ways similar to
the class of real numbers, it is nevertheless enumerable. In §8 I examine certain
arguments which would seem to prove the contrary. By the correct application of
one of these arguments, conclusions are reached which are superficially similar to
those of Gödel [1] . These results {231} have valuable applications. In particular, it
is shown (§11) that the Hilbertian Entscheidungsproblem can have no solution.

In a recent paper Alonzo Church[2] has introduced an idea of “effective
calculability”, which is equivalent to my “computability”, but is very differently
defined. Church also reaches similar conclusions about the
Entscheidungsproblem.[3] The proof of equivalence between “computability” and
“effective calculability” is outlined in an appendix to the present paper.

1. Computing machines.

We have said that the computable numbers are those whose decimals are calculable
by finite means. This requires rather more explicit definition. No real attempt will
be made to justify the definitions given until we reach §9. For the present I shall
only say that the justification lies in the fact that the human memory is necessarily
limited.

We may compare a man in the process of computing a real number to a machine
which is only capable of a finite number of conditions q1, q2, ..., qR which will be
called “m-configurations”. The machine is supplied with a “tape”, (the analogue of
paper) running through it, and divided into sections (called “squares”) each capable
of bearing a “symbol”. At any moment there is just one square, say the r-th, bearing
the symbol S(r) which is “in the machine”. We may call this square the “scanned
square”. The symbol on the scanned square may be called the “scanned symbol”.
The “scanned symbol” is the only one of which the machine is, so to speak,
“directly aware”. However, by altering its m-configuration the machine can
effectively remember some of the symbols which it has “seen” (scanned)
previously. The possible behaviour of the machine at any moment is determined by
the m-configuration qn and the scanned symbol S(r). This pair qn, S(r) will be
called the “configuration”: thus the configuration determines the possible behaviour
of the machine. In some of the configurations in which the scanned square is blank
(i.e. bears no symbol) the machine writes down a new symbol on the scanned
square: in other configurations it erases the scanned symbol. The machine may also
change the square which is being scanned, but only by shifting it one place to right
or 1eft. In addition to any of these operations the m-configuration may be changed.
Some of the symbols written down {232} will form the sequence of figures which is
the decimal of the real number which is being computed. The others are just rough
notes to “assist the memory”. It will only be these rough notes which will be liable
to erasure.

It is my contention that these operations include all those which are used in the
computation of a number. The defence of this contention will be easier when the
theory of the machines is familiar to the reader. In the next section I therefore
proceed with the development of the theory and assume that it is understood what is
meant by “machine”, “tape”, “scanned”, etc.

2. Definitions.

Automatic machines.

If at each stage the motion of a machine (in the sense of §1) is completely

determined by the configuration, we shall call the machine an “automatic machine”
(or a-machine). For some purposes we might use machines (choice machines or
c-machines) whose motion is only partially determined by the configuration (hence
the use of the word “possible” in §1). When such a machine reaches one of these
ambiguous configurations, it cannot go on until some arbitrary choice has been
made by an external operator. This would be the case if we were using machines to
deal with axiomatic systems. In this paper I deal only with automatic machines, and
will therefore often omit the prefix a-.

Computing machines.

If an a-machine prints two kinds of symbols, of which the first kind (called figures)
consists entirely of 0 and 1 (the others being called symbols of the second kind),
then the machine will be called a computing machine. If the machine is supplied
with a blank tape and set in motion, starting from the correct initial
m-configuration, the subsequence of the symbols printed by it which are of the first
kind will be called the sequence computed by the machine. The real number whose
expression as a binary decimal is obtained by prefacing this sequence by a decimal
point is called the number computed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the
complete sequence of all symbols on the tape, and the m-configuration will be said
to describe the complete configuration at that stage. The changes of the machine
and tape between successive complete configurations will be called the moves of
the machine.

{233}

Circular and circle-free machines.

If a computing machine never writes down more than a finite number of symbols of
the first kind it will be called circular. Otherwise it is said to be circle-free.

A machine will be circular if it reaches a configuration from which there is no
possible move, or if it goes on moving, and possibly printing symbols of the second
kind, but cannot print any more symbols of the first kind. The significance of the
term “circular” will be explained in §8.

Computable sequences and numbers.

A sequence is said to be computable if it can be computed by a circle-free machine.
A number is computable if it differs by an integer from the number computed by a
circle-free machine.

We shall avoid confusion by speaking more often of computable sequences than of
computable numbers.

3. Examples of computing machines.

I. A machine can be constructed to compute the sequence 010101.... The machine is
to have the four m-configurations “ b”, “c”, “z”, “e” and is capable of printing
“0”, and “1”. The behaviour of the machine is described in the following table in
which “R” means “the machine moves so that it scans the square immediately on
the right of the one it was scanning previously”. Similarly for “L”. “E” means the
scanned symbol is “erased” and “P” stands for “prints”. This table (and all
succeeding tables of the same kind) is to be understood to mean that for a

configuration described in the first two columns the operations in the third column
are carried out successively, and the machine then goes over into the
m-configuration described in the last column. When the second column is left
blank, it is understood that the behaviour of the third and fourth columns applies for
any symbol and for no symbol. The machine starts in the m-configuration b with a
blank tape.

 Configuration Behaviour

b None P0, R c

c None R e

e None P1, R z

z None R b

 {234}If (contrary to the description in §1) we allow the letters L, R to appear more
than once in the operations column we can simplify the table considerably.

m-config. symbol operations
final

m-config.

None P0 b

0 R, R, P1 bb~
1 R, R, P0 b

II. As a slightly more difficult example we can construct a machine to compute the
sequence 001011011101111011111.... The machine is to be capable of five
m-configurations, viz. “o”, “q”, “p”, “f”, “b” and of printing “e”, “x”, “0”, “1”.
The first three symbols on the tape will be “ e e 0”; the other figures follow on
alternate squares. On the intermediate squares we never print anything but “x”.
These letters serve to “keep the place” for us and are erased when we have finished
with them. We also arrange that in the sequence of figures on alternate squares there
shall be no blanks.

Configuration Behaviour

m-config. symbol operations
final

m-config.

b
Pe, R, Pe, R, P0,

R, R, P0, L, L
o

o~ 1
0

R, Px, L, L, L

o
q

q~
Any (0
or 1)
None

R, R
P1, L

q
p

p~
x
e

None

E, R
R

L, L

q
f
p

f~ Any
None

R, R
P0, L, L

f
o

To illustrate the working of this machine a table is given below of the first few
complete configurations. These complete configurations are described by writing
down the sequence of symbols which are on the tape, {235} with the
m-configuration written below the scanned symbol. The successive complete
configurations are separated by colons.

: e e 0 0 : e e 0 0 : e e 0 0 : e e 0 0 : e e 0 0 1 :

b o q q q p

e e 0 0 1 : e e 0 0 1 : e e 0 0 1 : e e 0 0 1 :

 p p f f

e e 0 0 1 : e e 0 0 1 : e e 0 0 1 0 :

 f f o

e e 0 0 1 x 0 :

 o

This table could also be written in the form

b : e e o 0 0 : e e q 0 0 :
…,

(C)

 in which a space has been made on the left of the scanned symbol and the
m-configuration written in this space. This form is less easy to follow, but we shall
make use of it later for theoretical purposes.

The convention of writing the figures only on alternate squares is very useful: I
shall always make use of it. I shall call the one sequence of alternate squares
F-squares and the other sequence E-squares. The symbols on E-squares will be
liable to erasure. The symbols on F-squares form a continuous sequence. There are
no blanks until the end is reached. There is no need to have more than one E-square
between each pair of F-squares: an apparent need of more E-squares can be
satisfied by having a sufficiently rich variety of symbols capable of being printed on
E-squares. If a symbol J- is on an F-square S and a symbol I is on the E-square
next on the right of S, then S and J will be said to be marked with I. The process of
printing this I will be called marking J (or S) with I.

4. Abbreviated tables

There are certain types of process used by nearly all machines, and these, in some
machines, are used in many connections. These processes include copying down
sequences of symbols, comparing sequences, erasing all symbols of a given form,
etc. Where such processes are concerned we can abbreviate the tables for the
m-configurations considerably by the use of “skeleton tables”. In skeleton tables
there appear capital German letters [4] and small Greek letters. These are of the
nature of “variables”. By replacing each capital German letter throughout by an
m-configuration {236} and each small Greek letter by a symbol, we obtain the table
for an m-configuration.

The skeleton tables are to be regarded as nothing but abbreviations: they are not
essential. So long as the reader understands how to obtain the complete tables from
the skeleton tables, there is no need to give any exact definitions in this connection.

Let us consider an example:

m-configuration Symbol Behaviour
Final

m-config.

f(CYB,I)~ e
not e

L

L

f1(CYBYI)
f(CYB,I)

f1(CYB,I)
I

not I

R
C

f1(CYB,I)

From the
m-configuration
f(CYBYI) the
machine finds the
symbol of form I
which is farthest to

e(b, x) e(e(b, x), b, x)

or q e(qYb, x).

q e(qYb,x)

e(qYb,x) f(e1(qYbY x),b,x)

e1(qYb,x) E q.

f2(CYB,I)~
I

not I
None

R
R

C
f1(CYB,I)

B

the left (the
“first I”) and the
m-configuration
then becomes C. If
there is no I then
the m-configuration
becomes B.

If we were to replace C throughout by q (say), B by r, and I by x, we should have a
complete table for the m-configuration f(qYr, x). f is called an “m-configuration
function” or “m-function”.

The only expressions which are admissible for substitution in an m-function are the
m-configurations and symbols of the machine. Those have to be enumerated more
or less explicitly: they may include expressions such as p (e, x); indeed they must if
there are any m-functions used at all. If we did not insist on this explicit
enumeration but simply stated that the machine had certain m-configurations
(enumerated) and all m-configurations obtainable by substitution of
m-configurations in certain m-functions, we should usually get an infinity of
m-configurations; e.g., we might say that the machine was to have the
m-configuration q and all m-configurations obtainable by substituting an

m-configuration for C in p(C). Then it would have qY p(q), p(p(q)),p(p(p(q)))
... as m-configurations.

Our interpretation rule then is this. We are given the names of the m-configurations
of the machine, mostly expressed in terms of m-functions. We are also given
skeleton tables. All we want is the complete table for the m-configurations of the
machine. This is obtained by repeated substitution in the skeleton tables.

{237} Further examples.

 (In the explanations the symbol “\” is used to signify “the machine goes into the
m-configuration ...”)

e(CYBYI) f(e1(CYBYI)BYI)

e1(CYBYI) E C

From e(CYBYI)
the first I is
erased and \C. If
there is no I\B.

e(BYI) e(e(BYI),BYI) From e(B,I) all
letters I are
erased and \B

The last example seems somewhat more difficult to interpret than most. Let us
suppose that in the list of m-configurations of some machine there appears e(b, x)

(= q, say). The table is

Or, in greater detail:

In this we could replace e1(qYB, x) by q' and then give the table for f(with the
right substitutions) and eventually reach a table in which no m-functions appeared.

pe(C,J) f(pe1(C,J)C,e)

pe1(CYJ) ~ Any
None

R,
R
PJ

pe1(C,J)

From pe(CYJ) the
machine prints J at the
end of the sequence of
symbols and \C.

l(C)
r(C)

L

R

C
C

From f'(CYB,I) it does the
same as for f(CYB,I) but
moves to the left before
C.

f'(CYB,I) f(l(C),B,I)

f"(CYB,I) f(r(C)YB,I)

c(CYB,I)
c1(C)

J

f(c1(C)YB,I)
pe(C,J)

c(CYB,I). The machine
writes at the end the first
symbol marked I and \C.

{238} The last line stands for the totality of lines obtainable from it by replacing J by
any symbol which may occur on the tape of the machine concerned.

ce(CYB,I)
ce(B,I)

c(e(CYB,I), B,I)

ce(ce(B,I), B,I)

ce(B,I). The machine
copies down in order at
the end all symbols
marked I and erases the
letters I;\B.

re(CYB,I,J)
re1(CYB,I,J)

E,PJ

f(re1(CYB,I,J) B,I)
C

re(C,B,I,J). The machine
replaces the first I by J
and \C\B if there is no I.

re(B,I,J)

re(re(B,I,J) B,I,J) re(B,I,J). The machine
replaces all letters I byJ;
\B.

cr(CYB,I)
cr(B,I)

c(re(CYB,I,a) B,I)

cr(cr(B,I),

re(B,a,I),I)

cr(B,I) differs from
ce(B,I) only in that the
letters I are not erased.
The m-configuration
cr(B,I) is taken up when
no letters “a” are on the
tape.

cp(CYU,E,I,J) f'(cp1YC1YU,J), f(UYE,J),I)

cp1(CYU,J) O f'(cp2(CYU,J),UYJ)

cp2(CYUYO) ~
O
not
O

C
U.

The first symbol marked I and the first marked J are compared. If there is neither I
nor J \E. If there are both and the symbols are alike, \C. Otherwise \U.

cpe(CYUYEYI,J) cp(e(e(CYCYJ)CYI),UYEYI,J)

cpe(CYUYEYI,J) differs from cp(CYUYEYI,J) in that in the case when there is
similarity the first I and J are erased.

cpe(UYEYI,J) cpe cpe(UYEYI,J),UYEYI,J .

cpe(UYEYI,J). The sequence of symbols marked I is compared with the sequence
marked J. \E if they are similar. Otherwise U. Some of the symbols Iand Jare
erased.
{239}

q(C) ~
Any
None

R

R

q(C)
q1(C)

q(C,I). The machine
finds the last symbol of
form I. \C.

q1(C) ~ Any
None

R

q(C)

C

q(C,I) q(q1(CYI))

q1(C,I) ~ I
not I

L

C
q1(CYI)

pe2(CYI,J) pe(pe(CYJ),I)
pe2(pe(CYI,J). The

machine prints I J at
the end.

ce2(BYI,J) ce(ce(BYJ),I)

ce3(BYI,J,O)

ce(ce2(BYJ,O),I)

ce3(BYI,J,O). The
machine copies down
at the end first the
symbols marked I, then
those marked J, and
finally those
marked O; it erases the
symbols I,J,O.

e(C) ~
e
Not
e

R

L

e1(C)
e(C)

From e(C) the marks
are erased from all
marked symbols. \C.

e1(C) ~ Any
None

R,
E,
R

e1(C)
C

5. Enumeration of computable sequences.

A computable sequence O is determined by a description of a machine which
computes O. Thus the sequence 001011011101111... is determined by the table on
p.234, and, in fact, any computable sequence is capable of being described in terms
of such a table.

It will be useful to put these tables into a kind of standard form. In the first place let
us suppose that the table is given in the same form as the first table, for example, I
on p.233. That is to say, that the entry in the operations column is always of one of
the forms E : E, R : E, L : Pa : Pa, R : Pa, L : R : L : or no entry at all. The table
can always be put into this form by introducing more m-configurations. Now let us
give numbers to the m-configurations, calling them q1 , ..., qR, as in § 1. The initial
m-configuration is always to be called q1. We also give numbers to the symbols S1,
…, Sm{240}and, in particular, blank = S0, 0 = S1 , l = S2. The lines of the table are
now of form

m-config. symbol operations final m-config.

qi Sj PSk, L qm (N1)

qi Sj PSk, R qm (N2)

qi Sj PSk qm (N3)

Lines such as

qi Sj E, R qm

Are to be written as

qi Sj PS0, R qm

And lines such as

qi Sj R qm

To be written as

qi Sj PSj, R qm

In this way we reduce each line of the table to a line of one of the forms (N1),
(N2), (N3).

From each line of form (N1) let us form an expression qi Sj Sk L qm; from each
line of form (N2) we form an expression qi Si Sk R qm; and from each line of form
(N3) we form an expression qi Sj Sk Nqm. Let us write down all expressions so
formed from the table for the machine and separate them by semi-colons. In this
way we obtain a complete description of the machine. In this description we shall
replace qi by the letter “D” followed by the letter “A” repeated i times, and Sj by
“D” followed by “C” repeated j times. This new description of the machine may
be called the standard description (S.D). It is made up entirely from the letters “A”,
“C”, “D”, “L”, “R”, “N”, and from “;”.

If finally we replace “A” by “1”, “C” by “2”, “D” by “3”, “L” by “4”, “R” by “5”,
“N” by “6”, and “;” by “7” we shall have a description of the machine in the form
of an arabic numeral. The integer represented by this numeral may be called a
description number (D.N) of the machine. The D.N determine the S.D and the
structure of the {241} machine uniquely. The machine whose D.N is n may be
described as M(n).

To each computable sequence there corresponds at least one description number,
while to no description number does there correspond more than one computable
sequence. The computable sequences and numbers arc therefore enumerable.

Let us find a description number for the machine I of §3. When we rename the
m-configurations its table becomes:

q1 S0 PS1, R q2

q2 S0 PS0, R q3

q3 S0 PS2, R q4

q4 S0 PS0, R q1

Other tables could be obtained by adding irrelevant lines such as

q1 S1 PS1, R q2

Our first standard form would be

q1S0S1Rq2; q2S0S0Rq3; q3S0S0Rq4;
q4S0S2Rq1;.

The standard description is

DADDCRDAA; DAADDRDAAA;

 DAAADDCCRDAAAA; DAAAADDRDA;

A description number is

31332531173113353111731113322531111731111335317

and so is

31332531173113353111731113322531L1173111133531731323253117

A number which is a description number of a circle-free machine will be called a
satisfactory number. In §8 it is shown that there can be no general process for
determining whether a given number is satisfactory or not.

6. The universal computing machine.

It is possible to invent a single machine which can be used to compute any
computable sequence. If this machine I is supplied with a tape on the beginning of
which is written the S.D of some computing machine M, {242} then I will compute
the same sequence as M. In this section I explain in outline the behavior of the
machine. The next section is devoted to giving the complete table for I.

Let us first suppose that we have a machine M' which will write down on the
F-squares the successive complete configurations of M. These might be expressed
in the same form as on p.235, using the second description, (C), with all symbols on
one line. Or, better, we could transform this description (as in §5) by replacing each
m-configuration by “D” followed by “A” repeated the appropriate number of times,
and by replacing each symbol by “D” followed by “C” repeated the appropriate
number of times. The numbers of letters “A” and “C” are to agree with the
numbers chosen in §5, so that, in particular, “0” is replaced by “DC”, “1” by
“DCC”, and the blanks by “D” . These substitutions are to be made after the
complete configurations have been put together, as in (C). Difficulties arise if we do
the substitution first. In each complete configuration the blanks would all have to be
replaced by “D” , so that the complete configuration would not be expressed as a
finite sequence of symbols.

If in the description of the machine II of §3 we replace “o ” by “DAA”, “e” by
“DCCC ”, “q”by “DAAA”, then the sequence (C) becomes:

DA : DCCCDCCCDAADCDDC : DCCCDCCCDAAADCDDC : ...
(C1)

(This is the sequence of symbols on F-squares.)

It is not difficult to see that if M can be constructed, then so can M'. The manner of
operation of M' could be made to depend on having the rules of operation (i.e., the
S.D) of it written somewhere within itself (i.e. within M'); each step could be
carried out by referring to these rules. We have only to regard the rates as being
capable of being taken out and exchanged or others and we have something very
akin to the universal machine.

One thing is lacking: at present the machine M' prints no figures. We may correct
this by printing between each successive pair of complete configurations the figures
which appear in the new configuration but not in the old. Then (C1) becomes

DDA : 0 : 0 : DCCCDCCCDAADCDDC : DCCC.... (C2)

It is not altogether obvious that the E-squares leave enough room for the necessary
“rough work”, but this is, in fact, the case.

The sequences of letters between the colons in expressions such as (C1) may be
used as standard descriptions of the complete configurations. When the letters are
replaced by figures, as in §5, we shall have a numerical {243} description of the
complete configuration, which may be called its description number.

7. Detailed description of the universal machine.

A table is given below of the behaviour of this universal machine. The
m-configurations of which the machine is capable are all those occurring in the first
and last columns of the table, together with all those which occur when we write
out the unabbreviated tables of those which appear in the table in the form of
m-functions. E.g., e(anf) appears in the table and is an m-function. Its
unabbreviated table is (see p. 239)

e(anf) ~
e

not e

R

L

e1(anf)

e(anf)

e(anf) ~
Any

None

R, E, R

e1(anf)

e(anf)

Consequently e1(anf) is an m-configuration of I.

When I is ready to start work the tape running through it bears on it the symbol e on
an F-square and again e on the next E-square; after this, on F-squares only, comes
the S.D of the machine followed by a double colon “: :” (a single symbol, on an
F-square). The S.D consists of a number of instructions, separated by semi-colons.

Each instruction consists of five consecutive parts

i) “D” followed by a sequence of letters “A”. This describes the relevant
m-configuration.

ii) “D” followed by a sequence of letters “C”. This describes the scanned symbol.

iii) “D” followed by another sequence of letters “C”. This describes the symbol
into which the scanned symbol is to be changed.

iv) L”, “R”, “N”, describing whether the machine is to move to left, right, or not at
all.

v) “D” followed by a sequence of letters “A”. This describes the final
m-configuration.

The machine I is to be capable of printing “A”, “C”, “D”, “0”, “1”, “u”, “v”, “w”,
“x”, “y”, “z”.
The S.D is formed from “ ; ”, “A”, “C”, “D”, “L”, “R”, “N”.

{244} Subsidiary skeleton table.

con(C,I) ~
Not
A

A

R, R

L,PI,R

con(CYI)

con1(CYI)

con(CYI). Starting from an
F-square, S say, the
sequence C of symbols
describing a configuration

con1(C,I) ~
A

D

R,PI,R

R,PI,R

con1(CYI)

con2(C,I)

closest on the right of S is
marked out with
letters I. \C.

con1(C,I) ~
C

Not
C

R,PI,R

R,R

con2(C,I)

C

con(C,). In the final
configuration the machine
is scanning the square
which is four squares to the
right of the last square of C.

C is left unmarked.

The table for U.

b f(b1, b1, ::)

b1
R, R, P :, R, R,

PD, R, R, PA
anf

b. The machine prints :DA on
the F-squares after :: \anf.

anf g(anf1 , :)

anf1 con(fom, y)

anf. The machine marks the
configuration in the last
complete configuration with y.
\fom.

fom ~
;
z

not z
nor ;

R, Pz, L
L, L

L

con(fmp, x)
fom
fom

fom. The machine finds the
last semi-colon not marked
with z. It marks this semi-colon
with z and the configuration
following it with x.

fmp

cpe(e(fom,x, y), sim,

x, y)

fmp. The machine compares
the sequences marked x and y.
It erases all letters x and y.
\sim if they are alike.
Otherwise \fom.

anf. Taking the long view, the last instruction relevant to the last configuration is
found. It can be recognised afterwards as the instruction following the last
semi-colon marked z. \sim.

{245}

sim
f'(sim1Y
sim1, z)

sim1 con(sim2,)

sim2 ~ A
Not A

R, Pu,
R, R, R

sim3
sim2

sim3 ~ Not A

A

L, Py
L, Py, R,

R, R

e(mf , z)
sim3

sim. The machine marks out
the instructions. That part of
the instructions which refers
to operations to be carried
out is marked with u, and
the final m-configuration
with y. The letters z are
erased.

mf g(mf , :)

mf1 ~ Not A
A

R, R
L, L, L,

L

mf1
mf2

mf2 ~
C
:
D

R, Px, L,
L, L

R, Px, L,

L, L

mf2
mf4
mf3

mf . The last complete
configuration is marked out
into four sections. The
configuration is left
unmarked. The symbol
directly preceding it is
marked with x. The
remainder of the complete
configuration is divided into
two parts, of which the first

mf3
not :

:
L, L

mf3
mf4

mf4
con(l(l(mf5)),

)

mf5 ~ Any
None

R, Pw, R
P:

mf5
sh

is marked with v and the last
with w. A colon is printed
after the whole. \sh.

sh
f(sh1Y instY

u)

sh1 L, L, L sh2

sh2 ~ D

not D

R, R, R,
R

sh2
inst

sh3 ~ C
not C

R, R

sh4
inst

sh4 ~ C
not C

R, R

sh5
pe2(inst, 0, :)

sh5 ~ C
not C

inst

pe2(inst, 1, :)

sh. The instructions (marked
u) are examined. If it is
found that they involve
“Print 0” or “Print 1”, then
0: or 1: is printed at the end.

{246}

 inst g(l(inst1),u)

inst1 I R, E inst1(I)

inst1(L)
ce5(ov, v, y,

x, u, w)

inst1(R)
ce5(ov, v, y,

x, u, w)

inst. The next complete
configuration is written
down, carrying out the
marked instructions. The
letters u, v, w, x, y are
erased. \anf.

inst1(N)
ce5(ov, v, y,

x, u, w)

ov e(anf)

8. Application of the diagonal process.

It may be thought that arguments which prove that the real numbers are not
enumerable[5] would also prove that the computable numbers and sequences cannot
be enumerable . It might, for instance, be thought that the limit of a sequence of
computable numbers must be computable. This is clearly only true if the sequence
of computable numbers is defined by some rule.

Or we might apply the diagonal process. “If the computable sequences are
enumerable, let In be the n-th computable sequence, and let Yn(m) be the m-th
figure in In. Let J be the sequence with 1 – Yn(n) as its n-th figure. Since Jis
computable, there exists a number K such that 1 – Yn(n) = YK(n) all n. Putting n =
K, we have 1 = 2YK(K), i.e. 1 is even. This is impossible. The computable
sequences are therefore not enumerable”.

The fallacy in this argument lies in the assumption that J is computable. It would be
true if we could enumerate the computable sequences by finite means, but the

problem of enumerating computable sequences is equivalent to the problem of
finding out whether a given number is the D.N of a circle-free machine, and we
have no general process for doing this in a finite number of steps. In fact, by
applying the diagonal process argument correctly, we can show that there cannot be
any such general process.

The simplest and most direct proof of this is by showing that, if this general process
exists, then there is a machine which computes J. This proof, although perfectly
sound, has the disadvantage that it may leave the reader with a feeling that “there
must be something wrong”. The proof which I shall give has not this disadvantage,
and gives a certain insight into the significance of the idea “circle-free”. It depends
not on constructing J, but on constructing J ', whose n-th figure is Yn(n).

{247} Let us suppose that there is such a process; that is to say, that we can invent a
machine D which, when supplied with the S.D of any computing machine M will
test this S.D and if M is circular will mark the S.D with the symbol “u” and if it is
circle-free will mark it with “s”. By combining the machines D and I we could
construct a machine M to compute the sequence J'. The machine D may require a
tape. We may suppose that it uses the E-squares beyond all symbols on F- squares,
and that when it has reached its verdict all the rough work done by D is erased.

The machine H has its motion divided into sections. In the first N –1 sections,
among other things, the integers 1, 2, …, N – 1 have been written down and tested
by the machine D. A certain number, say R(N – 1), of them have been found to be
the D.N’s of circle-free machines. In the N-th section the machine D tests the
number N. If N is satisfactory, i.e., if it is the D.N of a circle-free machine, then
R(N) = 1 +R(N – 1) and the first. R(N) figures of the sequence of which a D.N is N
are calculated. The R(N)-th figure of this sequence is written down as one of the
figures of the sequence J' computed by H. If N is not satisfactory, then R(N) = R(N
– 1) and the machine goes on to the (N + 1)-th section of its motion.

From the construction of Hwe can see that H is circle-free. Each section of the
motion of H comes to an end after a finite number of steps. For, by our assumption
about D, the decision as to whether N is satisfactory is reached in a finite number of
steps. If N is not satisfactory, then the N-th section is finished. If N is satisfactory,
this means that the machine M(N) whose D.N is N is circle-free, and therefore its
R(N)-th figure can be calculated in a finite number of steps. When this figure has
been calculated and written down as the R(N)-th figure of J', the N-th section is
finished. Hence H is circle-free.

Now let K be the D.N of H. What does H do in the K-th section of its motion? It
must test whether K is satisfactory, giving a verdict “s” or “u”. Since K is the D.N
of Hand since H is circle-free, the verdict cannot be “u”. On the other hand the
verdict cannot be “s”. For if it were, then in the K-th section of its motion H would
be bound to compute the first R(K – 1)+1 = R(K) figures of the sequence computed
by the machine with K as its D.N and to write down the R(K)-th as a figure of the
sequence computed by H. The computation of the first R(K) – 1 figures would be
carried out all right, but the instructions for calculating the R(K)-th would amount
to “calculate the first R(K) figures computed by H and write down the R(K)-th”.
This R(K)-th figure wonld never be found. I.e., H is circular, contrary both to what
we have found in the last paragraph and to the verdict “s”. Thus both verdicts are
impossible and we conclude that there can be no machine D.

{248} We can show further that there can be no machine R which, when applied

with the S.D of an arbitrary machine M, will determine whether M ever prints a

given symbol (0 say).

We will first show that, if there is a machine R, then there is a general process for

determining whether a given machine M prints 0 infinitely often. Let M1 be a
machine which prints the same sequence as M, except that in the position where the
first 0 printed by M stands, M1 prints %. M2 is to have the first two symbols 0
replaced by %, and so on. Thus, if M were to print

A B A 01 A A B 0 0 1 0 A B…,

then M1 would print

A B A % 1 A A B 0 0 1 0 A B…

and M2 would print

A B A % 1 A A B % 0 1 0 A B… .

Now let F be a machine which, when supplied with the S.D of M, will write down
successively the S.D of M, of M1, of M2, … (there is such a machine). We
combine F with R and obtain a new machine, G. In the motion of G first F is used
to write down the S.D of M, and then R tests it, :0: is written if it is found that M
never prints 0; then F writes the S.D of M1 and this is tested, :0: being printed if
and only if M1 never prints 0; and so on. Now let us test G with R. If it is found
that G never prints 0, then M prints 0 infinitely often; if G prints 0 sometimes,
then M does not print 0 infinitely often.

Similarly there is a general process for determining whether M prints 1 infinitely
often. By a combination of these processes we have a process for determining
whether M prints an infinity of figures, i.e. we have a process for determining
whether M is circle-free. There can therefore be no machine R.

The expression “there is a general process for determining …” has been need
throughout this section as equivalent to “there is a machine which will determine
…” This usage can be justified if and only if we can justify our definition of
“computable”. For each of these “general process” problems can be expressed as a
problem concerning a general process for determining whether a given integer n has
a property G(n) [e.g. G(n) might mean “n is satisfactory” or “ n is the Gödel
representation of a provable formula”], and this is equivalent to computing a
number whose n-th figure is 1 if G (n) is true and 0 if it is false. {249}

9. The extent of the computable numbers.

No attempt has yet been made to show that the “computable” numbers include all
numbers which would naturally be regarded as computable. All arguments which
can be given are bound to be, fundamentally, appeals to intuition, and for this
reason rather unsatisfactory mathematically. The real question at issue is “What are
the possible processes which can be carried out in computing a number?”

The arguments which I shall use are of three kinds.

a. A direct appeal to intuition.
 2. A proof of the equivalence of two definitions (in case the new definition has

a greater intuitive appeal).
 3. Giving examples of large classes of numbers which are computable.

Once it is granted that computable numbers are all “computable” several other
propositions of the same character follow. In particular, it follows that, if there is a
general process for determining whether a formula of the Hilbert function calculus

is provable, then the determination can be carried out by a machine.

I. [Type (a)]. This argument is only an elaboration of the ideas of §1.

Computing is normally done by writing certain symbols on paper. We may suppose
this paper is divided into squares like a child's arithmetic book. In elementary
arithmetic the two-dimensional character of the paper is sometimes used. But such a
use is always avoidable, and I think that it will be agreed that the two-dimensional
character of paper is no essential of computation. I assume then that the
computation is carried out on one-dimensional paper, i.e. on a tape divided into
squares. I shall also suppose that the number of symbols which may be printed is
finite. If we were to allow an infinity of symbols, then there would be symbols
differing to an arbitrarily small extent.[6] The effect of this restriction of the
number of symbols is not very serious. It is always possible to use sequences of
symbols in the place of single symbols. Thus an Arabic numeral such as {250} 17 or
999999999999999 is normally treated as a single symbol. Similarly in any
European language words are treated as single symbols (Chinese, however,
attempts to have an enumerable infinity of symbols). The differences from our
point of view between the single and compound symbols is that the compound
symbols, if they are too lengthy, cannot be observed at one glance. This is in
accordance with experience. We cannot tell at a glance whether 9999999999999999
and 999999999999999 are the same.

The behaviour of the computer at any moment is determined by the symbols which
he is observing. and his “state of mind” at that moment. We may suppose that there
is a bound B to the number of symbols or squares which the computer can observe
at one moment. If he wishes to observe more, he must use successive observations.
We will also suppose that the number of states of mind which need be taken into
account is finite. The reasons for this are of the same character as those which
restrict the number of symbols. If we admitted an infinity of states of mind, some of
them will be “arbitrarily close” and will be confused. Again, the restriction is not
one which seriously affects computation, since the use of more complicated states
of mind can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split up into “simple
operations” which are so elementary that it is not easy to imagine them further
divided. Every such operation consists of some change of the physical system
consisting of the computer and his tape. We know the state of the system if we
know the sequence of symbols on the tape, which of these are observed by the
computer (possibly with a special order), and the state of mind of the computer. We
may suppose that in a simple operation not more than one symbol is altered. Any
other changes can be set up into simple changes of this kind. The situation in regard
to the squares whose symbols may be altered in this way is the same as in regard to
the observed squares. We may, therefore, without loss of generality, assume that the
squares whose symbols are changed are always “observed” squares.

Besides these changes of symbols, the simple operations must include changes of
distribution of observed squares. The new observed squares must be immediately
recognisable by the computer. I think it is reasonable to suppose that they can only
be squares whose distance from the closest of the immediately previously observed
squares does not exceed a certain fixed amount. Let us say that each of the new
observed squares is within L squares of an immediately previously observed square.
In connection with “immediate recognisability”, it may be thought that there are
other kinds of square which are immediately recognisable. In particular, squares
marked by special symbols might be taken as imme- {251}diately recognisable. Now
if these squares are marked only by single symbols there can be only a finite
number of them, and we should not upset our theory by adjoining these marked

squares to the observed squares. If, on the other hand, they are marked by a
sequence of symbols, we cannot regard the process of recognition as a simple
process. This is a fundamental point and should be illustrated. In most mathematical
papers the equations and theorems are numbered. Normally the numbers do not go
beyond (say) 1000. It is, therefore, possible to recognise a theorem at a glance by its
number. But if the paper was very long, we might reach Theorem
157767733443477; then, farther on in the paper, we might find “... hence (applying
Theorem 157767733443477) we have...”. In order to make sure which was the
relevant theorem we should have to compare the two numbers figure by figure,
possibly ticking the figures off in pencil to make sure of their not being counted
twice. If in spite of this it is still thought that there are other “immediately
recognisable” squares, it does not upset my contention so long as these squares can
be found by some process of which my type of machine is capable. This idea is
developed in III below.

The simple operations must therefore include:

(a) Changes of the symbol on one of the observed squares.
(b) Changes of one of the squares observed to another square within L squares of
one of the previously observed squares.

It may be that some of these changes necessarily involve a change of state of mind.
The most general single operation must therefore be taken to be one of the
following:

A. A possible change (a) of symbol together with a possible change of state of
mind.

B. A possible change (b) of observed squares, together with a possible change of
state of mind.

The operation actually performed is determined, as has been suggested on p.250, by
the state of mind of the computer and the observed symbols. In particular, they
determine the state of mind of the computer after the operation is carried out.

We may now construct a machine to do the work of this computer. To each state of
mind of the computer corresponds an “m-configuration” of the machine. The
machine scans B squares corresponding to the B squares observed by the computer.
In any move the machine can change a symbol on a scanned square or can change
anyone of the scanned squares to another square distant not more than L squares
from one of the other scanned {252} squares. The move which is done, and the
succeeding configuration, are determined by the scanned symbol and the
m-configuration. The machines just described do not differ very essentially from
computing machines as defined in §2, and corresponding to any machine of this
type a computing machine can be constructed to compute the same sequence, that is
to say the sequence computed by the computer.

II. [Type (b)].

If the notation of the Hilbert functional calculus [7] is modified so as to be
systematic, and so as to involve only a finite number of symbols, it becomes
possible to construct an automatic [8] machine K which will find all the provable
formulae of the calculus.[9]

Now let I be a sequence, and let us denote by Ga(x) the proposition “The x-th
figure of I is 1”, so that [10] – Ga(x) means “The x-th figure of I is 0”. Suppose
further that we can find a set of properties which define the sequence I and which
can be expressed in terms of Ga(x) and of the propositional functions N(x)

meaning “x is a non-negative integer” and F(x,y) meaning “y = x + 1”. When we
join all these formulae together conjunctively we shall have a formula, U say,
which defines I. The terms of U must include the necessary parts of the Peano
axioms, viz.,

(`u)N(u)& (x)(N(x)\(`y)F(x,y)) &

(F(x,y)\N(y)),

which we will abbreviate to P.

When we say “U defines I”, we mean that –U is not a provable formula, and also
that, for each n, one of the following formulae (An) or (Bn) is provable.

U & F[5] \ G:(u[5]), (An)[11]

U & F[5] \ (– G:(u[5])), (Bn)

 where F[5] stands for F(u, u') & F(u', u") & … F(u[5-1] , u[5]).

{253} I say that Iis then a computable sequence: a machine K: to compute I can be
obtained by a fairly simple modification of K.

We divide the motion of K: into sections. The n-th section is devoted to finding the
n-th figure of I. After the (n – l)-th section is finished a double colon : : is printed
after all the symbols, and the succeeding work is done wholly on the squares to the
right of this double colon. The first step is to write the letter “A” followed by the
formula (An) and then “B” followed by (Bn). The machine K: then starts to do the
work of K, but whenever a provable formula is found, this formula is compared
with (An) and with (Bn). If it is the same formula as (An), then the figure “1” is
printed, and the n-th section is finished. If it is (Bn), then “0” is printed and the
section is finished. If it is different from both, then the work of K is continued from
the point at which it had been abandoned. Sooner or later one of the formulae (An)
or (Bn) is reached; this follows from our hypotheses about I and U, and the known
nature of K. Hence the n-th section will eventually be finished; Ka is circle-free; I is
computable.

It can also be shown that the numbers I definable in this way by the use of axioms
include all the computable numbers. This is done by describing computing
machines in terms of the function calculus.

It must be remembered that we have attached rather a special meaning to the phrase
“U defines I”. The computable numbers do not include all (in the ordinary sense)
definable numbers. Let P be a sequence whose n-th figure is 1 or 0 according as n
is or is not satisfactory. It is an immediate consequence of the theorem of §8 that P
is not computable. It is (so far as we know at present) possible that any assigned
number of figures of P can be calculated, but not by a uniform process. When
sufficiently many figures of P have been calculated, an essentially new method is
necessary in order to obtain more figures.

III. This may be regarded as a modification of I or as a corollary of II.

We suppose, as in I, that the computation is carried out on a tape; but we avoid
introducing the “state of mind” by considering a more physical and definite
counterpart of it. It is always possible for the computer to break off from his work,
to go away and forget all about it, and later to come back and go on with it. If he
does this he must leave a note of instructions (written in some standard form)
explaining how the work is to be continued. This note is the counterpart of the
“state of mind”. We will suppose that the computer works by such a desultory

manner that he never does more than one step at a sitting. The note of instructions
must enable him to carry out one step and write the next note. Thus the state of
progress of the computation at any stage is completely determined by the note of
{254} instructions and the symbols on the tape. That is, the state of the system may
be described by a single expression (sequence of symbols), consisting of the
symbols on the tape followed by A (which we suppose not to appear elsewhere) and
then by the note of instructions. This expression may be called the “state formula”.
We know that the state formula at any given stage is determined by the state
formula before the last step was made, and we assume that the relation of these two
formulae is expressible in the functional calculus. In other words we assume that
there is an axiom U which expresses the rules governing the behaviour of the
computer, in terms of the relation of the state formula at any stage to the state
formula at the proceeding stage. If this is so, we can construct a machine to write
down the successive state formulae, and hence to compute the required number.

10. Examples of large classes of numbers which are

computable.

It will be useful to begin with definitions of a computable function of an integral
variable and of a computable variable, etc. There are many equivalent ways of
defining a computable function of an integral variable. The simplest is, possibly, as
follows. If O is a computable sequence in which 0 appears infinitely [12] often, and
n is an integer, then let us defines W(O,n) to be the number of figures 1 between
the n-th and the (n+1)-th figure 0 in O. Then Y(n) is computable if , for all n and
some O, Y(n)=W(O,n). An equivalent definition is this. Let H(x,y) mean Y(x) = y.
Then if we can find a contradiction-free axiom U& such that U& \P, and if for each
integer n there exists and integer N, such that

U& & F[9] \ H(u[5], u(#[5])

and such that, if m / Y(n), then, for some N ',

U& & F[9Z] \ (– H(u[5],4)),

then Y may be said to be a computable function.

We cannot define general computable functions of a real variable, since there is no
general method of describing a real number, but we can define a computable
function of a computable variable. If n is satisfactory, let On be the number
computed by M(n), and let

In=tan(X(On – !)),

{255} unless On = 0 or On = 1, in either of which cases In = 0. Then, as n runs
through the satisfactory numbers, In runs through the computable numbers.[13]
Now let Y(n) be a computable function which can be shown to be such that for any
satisfactory argument its value is satisfactory.[14] Then the function f, defined by
f(In) = I&!n", is a computable function and all computable functions of a
computable variable are expressible in this form.

Similar definitions may be given of computable functions of several variables,
computable-valued functions of an integral variable, etc.

I shall enunciate a number of theorems about computability, but I shall prove only
(ii) and a theorem similar to (iii).

i) A computable function of a computable function of an integral or computable

variable is computable.

ii) Any function of an integral variable defined recursively in terms of computable
functions is computable. I.e. if Y(m, n) is computable, and r is some integer,
then T(n) is computable, where
 T(0) = r,

 T(n) = Y(n, T(n –1)).

iii) If Y(m,n) is a computable function of two integral variables, then Y(n,n) is a
computable function of n.

iv) If Y(n) is a computable function whose value is always 0 or 1, then the
sequence whose n-th figure is Y(n) is computable. Dedekind’s theorem does not
hold in the ordinary form if we replace “real” throughout by ‘computable’. But it
holds in the following form:

v) If G(I) is a propositional function of the computable numbers and

a) (`I)(`J){G(I) & (– G(J))},

b) G(I) & (– G(J)) \(I<J),

and there is a general process for determining the truth value of G(I), then {256}

there is a computable number W such that

 G(I) \ I ? W,
– G(I) \ I @ W.

In other words, the theorem holds for any section of the computables such that there
is a general process for determining to which class a given number belongs.

Owing to this restriction of Dedekind’s theorem, we cannot say that a computable
bounded increasing sequence of computable numbers has a computable limit. This
may possibly be understood by considering a sequence such as

–1, –!, –$, –*, –&, !, … .

On the other hand, (v) enables us to prove

vi) If Iand J are computable and I<J and Y(I)<0<Y(J), where Y(I) is a computable
increasing continuous function, then there is a unique computable number O,
satisfying I<O<J and Y(O) = 0.

Computable convergence.

We shall say that a sequence Jn of computable numbers converges computably if
there is a computable integral valued function N(Q) of the computable variable Q,
such that we can show that, if Q>0 and n>N(Q) and m>N(Q), then |Jn –Jm|<Q.

We can then show that

vii) A power series whose coefficients form a computable sequence of computable
numbers is computably convergent at all computable points in the interior of its
interval of convergence.

viii) The limit of a computably convergent sequence is computable.

And with the obvious definition of “uniformly computably convergent”:

ix) The limit of a uniformly computably convergent computable sequence of
computable functions is a computable function. Hence

x) The sum of a power series whose coefficients form a computable sequence is a
computable function in the interior of its interval of convergence.

From (viii) and X= 4(l – #+% – ...) we deduce that X is computable. From e= 1 + 1
+ $ + $ … we deduce that e is computable.

{257} From (vi) we deduce that all real algebraic numbers are computable.

From (vi) and (x) we deduce that the real zeros of the Bessel functions are
computable.

Proof of (ii).

Let H(x,y) mean “T(x)=y”, and let K(x,y,z) mean “Y(x,y)=z”. U& is the axiom for
Y(x,y). We take U* to be

U& & P & (F(x, y) \G(x,y)) & (G(x, y) & G(y,z)\G(x,z))

& (F[6]\H(u,u[6])) & (F(v,w) & H(v, x) &

K(w,x,z)\H(w,z))

& [H(w,z)& G(z,t) v G(t,z)\(—H(w,t))].

I shall not give the proof of consistency of U*. Such a proof may be constructed by
the methods used in Hilbert and Bernays, Grundlagen der Mathematik (Berlin,
1934), p.209 et seq. The consistency is also clear from the meaning.

Suppose that for some n, N, we have shown

U& & F[9] \H(u[5-1] , u[&O5-1P],

then, for some M,

U* & F[8] \K(u[5], u[&O5-1P], u[&O5P]

U* & F[8] \F(u[5-1] , u[5] & H(u[5-1] , u[&O5-1P]
 & Ku[5], u[&O5-1P], u[&O5P])

and

U* & F[8] \[F(u[5-1] , u[5] & H(u[5-1] , u[&O5-1P]
 & Ku[5], u[&O5-1P], u[&O5P]) \H(u[5], u[&O5P])].

Hence U* & F[8] \H(u[5], u[&O5P]).

Also U* & F[6] \H(u,u[&O0P] .

Hence for each n some formula of the form

U* & F[8] \H(u[5], u[&O5P])

is provable. Also, if M' @ M and M' @ m and m /T(u), then

U* & F[8Z] \G(u[&O5P]), u[4]) v G(u[4], u[&O5P])

{258}

U* & F[8Z] \[{G(u[&O5P], u [4]) v G(u[4], u[&O5P]) & H(u[5], u[&O5P])} \

(–H(u[5], u[4]))].

Hence U* & F[8Z] \(–H(u[5],u[4]))

The conditions of our second definition of a computable function are therefore
satisfied. Consequently T is a computable function.

Proof of a modified form of (iii).

Suppose that we are given a machine N, which, starting with a tape bearing on it ee
followed by a sequence of any number of letters “F” on F-squares and in the
m-configuration b, will compute a sequence On depending on the number n of
letters “F”. If Yn(m) is the m-th figure of On, then the sequence J whose n-th
figure is Yn(n) is computable.

We suppose that the table for N has been written out in such a way that in each line
only one operation appears in the operations column. We also suppose that C, B, %
and ^ do not occur in the table, and we replace e throughout by C, 0 by % and 1
by ^. Further substitutions are then made. Any line of form

 U I P% B

we replace by

 U I P% re(BYu, h, k)

and any line of the form

 U I P ^ B

by U I P^ re(BYv, h, k)

and we add to the table the following lines:

 u pe(u1,0)

 u1 R, Pk, R, PB, R, PB u2

 u2 re(u3Yu3, k, h)

 u2 pe(u2, F)

and similar lines with v for u and 1 for 0 together with the following line

c R, PC, R, Ph b.

We then have the table for the machine N' which computes J. The initial
m-confguration is c, and the initial scanned symbol is the second e. {259}

11. Application to the Entscheidungsproblem.

The results of §8 have some important applications. In particular, they can be used
to show that the Hilbert Entscheidungsproblem can have no solution. For the
present I shall confine myself to proving this particular theorem. For the
formulation of this problem I must refer the reader to Hilbert and Ackermann’s
Grundzüge der Theoretischen Logik (Berlin, 1931), chapter 3.

I propose, therefore, to show that there can be no general process for determining
whether a given formula U of the functional calculus Z is provable, i.e. that there
can be no machine which, supplied with any one U of these formulae, will
eventually say whether U is provable.

It should perhaps be remarked what I shall prove is quite different from the
well-known results of Gödel [15]. Gödel has shown that (in the formalism of
Principia Mathematica) there are propositions U such that neither U nor –U is
provable. As a consequence of this, it is shown that no proof of consistency of
Principia Mathematica (or of Z) can be given within that formalism. On the other
hand, I shall show that there is no general method which tells whether a given
formula U is provable in Z, or, what comes to the same, whether the system
consisting of Z with –U adjoined as an extra axiom is consistent.

If the negation of what Gödel has shown had been proved, i.e. if, for each U,
either U or –U is provable, then we should have an immediate solution of the
Entscheidungsproblem. For we can invent a machine K which will prove
consecutively all provable formulae. Sooner or later K will reach either U or –U. If
it reaches U, then we know that U is provable. If it reaches –U, then, since Z is
consistent (Hilbert and Ackermann, p.65), we know that U is not provable.

Owing to the absence of integers in Z the proofs appear somewhat lengthy. The
underlying ideas are quite straightforward.

Corresponding to each computing machine M we construct a formula Un(M) and
we show that, if there is a general method for determining whether Un (M) is
provable, then there is a general method for determining whether M ever prints 0.

The interpretations of the propositional functions involved are as follows:

R So(x,y) is to be interpreted as “in the complete configuration x (of M) the
symbol on the square y is S ”.

{260} I(x,y) is to be interpreted as “in the complete configuration x the square y is
scanned”.

Kqp(x) is to be interpreted as “in the complete configuration x the m-configuration
is qm.

F(x,y) is to be interpreted as “y is the immediate successor of x”.

Inst{qiSj Sk Lqo} is to be an abbreviation for

(x,y,x',y') ~(R Sg(x,y) & I(x,y) & Kqf(x) & F(x,x') & F(y',y))

\ (I(x',y') & RSh(x',y) & Kqo(x')

& (z)[F(y',z) v (R Sg(x',z)\RSh(x',z))])}.

Inst{qi, Sj, Sk, Rqo} and Inst{qi, Sj, Sk, Nqo}

are to be abbreviations for other similarly constructed expressions.

Let us put the description of M into the first standard form of §6. This description
consists of a number of expressions such as “qi, Sj, Sk, Lqo” (or with R or N
substituted for L). Let us form all the corresponding expressions such as Inst{qi, Sj,

Sk, Lqo}and take their logical sum. This we call Des (M).

The formula Un (M) is to be

(`u)[N(u) & (x)(N(x)\`x')F(x,x'))

& (y,z)(F(y,z)\N(y) & N(z)) & (y)RS6(u,y)

& I(u,u) & Kq7 (u) & Des(M)]

\(`s)(`t)[N(s) & N(t) & RS7(s,t)].

[N(u) & ... Des (M)] may be abbreviated to A(M).

When we substitute the meanings suggested on p.259 – 60 we find that Un (M) has
the interpretation “in some complete configuration of MY S1(i.e. 0) appears on the
tape”. Corresponding to this I prove that

a) If S1 appears on the tape in some complete configuration of M, then Un (M) is
provable.

b) If Un (M) is provable, then S1 appears on the tape in some complete
configuration of M.

When this has been done, the remainder of the theorem is trivial.

{261} LEMMA1. If S1 appears on the tape in some complete configuration of M ,

then Un (M) is provable.

We have to show how to prove Un (M). Let us suppose that in the n-th complete
configuration the sequence of symbols on the tape is Sr!n,0", Sr!n,1",, Sr!n,n",
followed by nothing but blanks, and that the scanned symbol is the i(n)-th, and that
the m-configuration is qk!n". Then we may form the proposition

RSx[v\6](u[5], u) & RSx[v\7] (u[5], u') & ... RSx[v\v](u[5],u[5])

& I(u[5],u[`[5]) & Kqh[v], (u[5])

& (y)F((y,u') v F(u,y) v F(u',y) v ... v F(u[5-1] ,y)
v RS6(u[5], y))

which we may abbreviate to CCn.

As before, F(u,u') & F(u,u") & ... & F(u[6-1],u[6]), is abbreviated to F[6].

I shall show that all formulae of the form A(M) & F[5]\ CCn (abbreviated to CFn)
are provable. The meaning of CFn is “The n-th complete configuration of M is so
and so”, where “so and so” stands for the actual n-th complete configuration of M.
That CFn should be provable is therefore to be expected.

CF0 is certainly provable, for in the complete configuration the symbols are all
blanks, the m-configuration is q1, and the scanned square is u, i.e. CC0 is

(y)RS6(u,y) & I(u,u) & Kq7(u).

A(M) \CC0 is then trivial.

We next show that CFn \ CFn+1 is provable for each n. There are three cases to

consider, according as in the move from the n-th to the (n + l)-th configuration the
machine moves to left or to right or remains stationary. We suppose that the first
case applies, i.e. the machine moves to the left. A similar argument applies in the
other cases. If r(n,i(n))=a, r(n+1,i(n+1))=c, k(i(n))=b, and k(i(n+1))=d, then
Des(M) must include Inst{qa Sb Sd Lqc} as one of its terms, i.e.

Des(M) \ Inst{qa Sb Sd Lqc}.

Hence A(M) & F[5+1] \ Inst{qa Sb Sd Lqc}& F[5+1] .

But Inst{qa Sb Sd Lqc} & F[5+1] \ (CCn\CCn+1)

is provable, and so therefore is

A(M) & F[5+1] \ (CCn\CCn+1)

{262} and A(M) & F[5] \ CCn) \ (A(M) & F[5+1] \ CCn+1)

i.e. CFn \ CFn+1.

CFn is provable for each n. Now it is the assumption of this lemma that S1 appears
somewhere, in some complete configuration, in the sequence of symbols printed
by M; that is, for some integers N, K, CCN has RS7(u[9], u[7]) as one of its terms,
and therefore CCN\RS7(u[9],u[7]) is provable. We have then

 CCN\ RS7(u[9], u[7])

and A(M) & F[5] \ CC9

We also have (`u)A(M) \(`u)(`u') ... (`u[9Z]) A(M) & F[9],

where N' = max (N, K). And so

(`u)A(M) \(`u)(`u') … (`u[9Z]) RS7(u[9], u[7]),

(`u)A(M) \(`u)(`u[9])(`u[7]) (`u[9], u[7]),

(`u)A(M)\(`s)(`t)RS7(s,t),

i.e. Un(M) is provable.

This completes the proof of Lemma 1.

LEMMA 2. If Un(M) is provable, then S1 appears on the tape in so-complete

configuration of M.

If we substitute any propositional functions for function variables in a provable
formula, we obtain a true proposition. In particular, if we substitute the meanings
tabulated on pp. 259 – 260 in Un(M), we obtain a true proposition with the meaning
“S1 appears somewhere on the tape in some complete configuration of M”.

We are now in a position to show that the Entseheidungsproblem cannot be solved.
Let us suppose the contrary. Then there is a general (mechanical) process for
determining whether Un(M) is provable. By Lemmas l and 2, this implies that there
is a process for determining whether M ever prints 0, and this is impossible, by §8.
Hence the Entscheidungsproblem cannot be solved.

In view of the large number of particular cases of solutions of the
Entscheidungsproblem for formulae with restricted systems of quantors, it {263} is

interesting to express Un(M) in a form in which all quantors are at the beginning.
Un(M) is, in fact, expressible in the form

 (u)(`x)(w)(`u1) ... (`un)B, (I)

 where B contains no quantors, and n = 6. By unimportant modifications we can
obtain a formula, with all essential properties of Un(M), which is of form (I) with n
= 5.

Added 28 August, 1936.

APPENDIX.

Computability and effective calculability

The theorem that all effectively calculable (V-definable) sequences are computable
and its converse are proved below in outline. It is assumed that the terms
“well-formed formula” (W.F.F.) and “conversion” as used by Church and Kleene
are understood. In the second of these proofs the existence of several formulae is
assumed without proof; these formulae may be constructed straightforwardly with
the help of, e.g., the results of Kleene in “A theory of positive integers in formal
logic”, American Journal of Math., 57 (1935), 153-173, 219-244.

The W.F.F. representing an integer n will be denoted by Nn. We shall say that a
sequence O whose n-th figure is Y9(n) is V-definable or effectively calculable if
1+Y9(u) is a V-definable function of n, i.e. if there is a W.F.F. M9 such that, for
all integers n,

{M9} (Nn) conv N&9!n"+1,

i.e. {M9}(Nn) is convertible into Vxy.x(x(y)) or into Vxy.x(y) according as the

n-th figure of V is 1 or 0.

To show that every V-definable sequence O is computable, we have to show how
to construct a machine to compute O. For use with machines it is convenient to
make a trivial modification in the calculus of conversion. This alteration consists in
using x, x', x", ... as variables instead of a, b, c, …. We now construct a machine L
which, when supplied with the formula M9, writes down the sequence O. The
construction of L is somewhat similar to that of the machine K which proves all
provable formulae of the functional calculus. We first construct a choice
machine L1 which, if supplied with a W.F.F., M say, and suitably manipulated,
obtains any formula into which M is convertible. L1 can then be modified so as to
yield an automatic machine L2 which obtains successively all the formulae {264}

into which M is convertible (cf- foot-note p.252). The machine L includes L2 as a
part. The motion of the machine L when supplied with the formula M9 is divided
into sections of which the n-th is devoted to finding the n-th figure of O. The first
stage in this n-th section is the formation of {M9} (Nn). This formula is then
supplied to the machine L2, which converts it successively into various other
formulae. Each formula into which it is convertible eventually appears, and each, as
it is found, is compared with

Vx[V'x[{x}({x}(x'))]], i.e. N2,

and with Vx[Vx'[{x}(x')]], i.e. N1.

If it is identical with the first of these, then the machine prints the figure 1 and the
n-th section is finished. If it is identical with the second, then 0 is printed and the

section is finished. If it is different from both, then the work of' L2 is resumed. By
hypothesis, {M9}(Nn) is convertible into one of the formulae N2 or N1;
consequently the n-th section will eventually be finished, i.e. the n-th figure of O
will eventually be written down.

To prove that every computable sequence O is V-definable, we must show how to
and a formula M9 such that, for all integers n,

{M9} (Nn) conv N1+&9!n".

Let M be a machine which computes O and let us take some description of the
complete configurations of M by means of numbers, e.g. we may take the D.N of
the complete configuration as described in §6. Let W(n) be the D.N of the n-th
complete configuration of M. The table for the machine M gives us a relation
between W(n + 1) and W(n) of the form

W(n + 1) = p9(W(n)),

where p9 is a function of very restricted, although not usually very simple, form: it
is determined by the table for M. p9 is V-definable (I omit the proof of this), i.e.
there is a W.F.F. A9 such that, for all integers n,

{A9} (Nw!n") conv Nw!n+1".

Let U9 stand for

Vu[~{u}(A9)x(Nr)]

where r = W(0); then, for all integers n,

{U9} (Nn) conv Nw!n".

{265} It may be proved that there is a formula V such that

{{V}(Nw!n+1")}
(Nw!n") y

conv
N1
conv
N2
conv
N3

if, in going from the n-th to the (n+1)-th
complete configuration, the figure 0 is
printed.
if the figure 1 is printed.
otherwise.

Let W% stand for

Vu[~{V}({A9}({U9}(u)))x({U9}(u))]

so that, for each integer n,

~{{V}(Nw!n+1")x (w!n") conv {W9} (Nn),

and let Q be a formula such that

~{Q}(W9)x(Ns) conv Nr!z"

where r(s) is the s-th integer q for which (W9) (Nn) is convertible into either N1
or N2. Then, if M9 stands for

Vw {W9} {Q}(W9) (w)

it will have the required property.[16]

The Graduate College,
Princeton University,
New Jersey,
U.S.A.

{544} {Proc. London Math. Soc, Ser. 2, Vol. 43,. No. 2198}

ON COMPUTABLE NUMBERS, WITH AN

APPLICATION TO THE

ENTSCHEIDUNGSPROBLEM.

A CORRECTION

By A. M. Turing

In a paper entitled On computable numbers, with an application to the

Entseheidungsproblem [17] the author gave a proof of the insolubility of the
Entseheidungsproblem of the “engere Funktionenkalkül”.[18] This proof contained
some formal errors which will be corrected here: there are also some other
statements in the same paper which should be modified, although they are not
actually false as they stand.

The expression for Inst{qi Sj Sk Lqo} on p.260 of the paper quoted should read

(x,y,x',y') ~(RSg(x,y) & I(x,y) & Kqf(x) & F(x,x') & F(y',y))

 \ (I(x',y') & RSh(x',y) & Kqo(x') & F(y',z) v

[(RS6(x,z)\(RS6(x',z))

& (RS7(x,z)\(RS7(x',z)) & ... &

(RSy(x',z))])},

S0, S1, …, SM being the symbols which M can print. The statement on p261, line
33, viz.

“Inst{qa Sb Sd Lqc} & F[5+1] \ (CCn \ CCn+1)

is provable” is false (even with the new expression for Inst {qa Sb Sd Lqc}): we

are unable for example to deduce F[5+1] \(–F(u,u")) and therefore can never use

the term

F (y',z) v [(RS6(x,z) \RS6(x',z)) & … & (RSy(x,z) \RSy(x',z))]

{545} in Inst {qa Sb Sd Lqc}. To correct this we introduce a new functional
variable G [G(x,y) to have the interpretation “x precedes y”.]. Then, if Q is an
abbreviation for

(x)(`w)(y,z) F(x,w) & F(x,y)\G(x,y) & F(x,z) & G(z,y)\G(x,y)

& [G(z,x) v (G(x,y) & F(y,z)) & (F(x,y) v F(z,y)) \ (–F(x,z))]}

the corrected formula Un(M) is to be

(`u)A(M)\(`s)(`t)RS7(s,t),

where A(M) is an abbreviation for

Q & (y)RS6(u,y) & I(u,u) & Kq7(u) & Des (M).

The statement on p261 (line 33) must then read

Inst{qa Sb Sd Lqc} & Q & F[5+1] \ (CCn\ CCn+1)

and line 29 should read

r(n,i(n))=b, r(n+1,i(n))=d, k(n)=a, k(n+1)=c.

For the words “logical sum” on p. 260, line 15, read “conjunction”. With these
modifications the proof is correct. Un (M) may be put in the form (I) (p.263) with n
= 4.

Some difficulty arises from the particular manner in which “computable number”
was defined (p.233). If the computable numbers are to satisfy intuitive requirements
we should have:

If we can give a rule which associates with each positive integer n two rationals

an, bn satisfying an? an+1 < bn+1 ? bn, bn – an < 2-5, then there is a

computable number I for which an? I ?bn each n.

 (A)

A proof of this may be given, valid by ordinary mathematical standards, but
involving an application of the principle of excluded middle. On the other hand the
following is false:

There is a rule whereby, given the rule of formation of the sequence an, bn in (A)
we can obtain a D.N. for a machine to compute I .

 (B)

That (B) is false, at least if we adopt the convention that the decimals of numbers of
the form m/2* shall always terminate with zeros, can be seen in this way. Let N be
some machine, and define cn as follows: cn = !-2-4-3 if M has not printed a figure
0 by the time the n-th complete configuration is reached cn = ! – 2-4-3 if 0 had first
been printed as the m-th {546} complete configuration (m?n). Put an = cn – 2-5-2,
bn = cn + 2-5-2. Then the inequalities of (A) are satisfied, and the first figure of I
is 0 if N ever prints 0 and is 1 otherwise. If (B) were true we should have a means
of finding the first figure of I given the D.N. of N: i.e we should be able to
determine whether N ever prints 0, contrary to the results of §8 of the paper quoted.
Thus although (A) shows that there must be machines which compute the Euler
constant (for example) we cannot at present describe any such machine, for we do
not yet know whether the Euler constant is of the form m/2*.

This disagreeable situation can be avoided by modifying the manner in which
computable numbers are associated with computable sequences, the totality of
computable numbers being left unaltered. It may be done in many ways [19] of
which this is an example. Suppose that the first figure of a computable sequence O

is i and that this is followed by 1 repeated n times, then by 0 and finally by the
sequence whose r-th figure is cr; then the sequence O is to correspond to the real
number

 (2i – l) n + !(2cr – l)(^)6.

If the machine which computes O is regarded as computing also this real number
then (B) holds. The uniqueness of representation of real numbers by sequences of
figures is now lost, but this is of little theoretical importance, since the D.N.’s are
not unique in any case.

The Graduate College,
 Princeton, N.J.,
 U.S.A.

Endnotes

 1. Gödel, “Uber formal unentscheidbare Satze der Principia Mathernatica und
verwant der Systeme, I”, Monatshefte Math. Phys., 38 (1931). 173-198.

 2. Alonzo Church. “An unsolvable problem of elementary number theory”,
American J of Math., 58(1936), 345 – 363.

 3. Alonzo Church. “A note on the Entscheidungsprob1em”, J. of Symbolic logic,
1 (1930), 40 – 41.

 4. In this reproduction, we at abelard.org are using a redrawn blackletter font in
place of the High German blackletter fonts used in Turing’s paper. The
typeface used in the original paper makes it extremely difficult to
systematically and fluently distiguish between letters, especially capital C,
capital E and capital S. English and German blackletter typefaces have,
fundamentally, an extremely similar character set. No doubt, however, they
varied widely in detail between different printing presses. Our conclusion is
that this minor modification to the original typesetting improves the
readability of the paper, and thus conveys Turing’s intent more effectively,
without detracting from the artistry of his intended layout.

 5. Cf. Hobson, Theory of functions of a real variable (2nd ed., 1921), 87, 88.
 6. If we regard a symbol as literally printed on a square we may suppose that the

square is 0 ? x ? 1, 0 ? y ? 1. The symbol is defined as a set of points in this
square, viz. the set occupied by printer’s ink. If these sets are restricted to be
measurable, we can define the “distance” between two symbols as the cost of
transforming one symbol into the other if the cost of moving unit area of
printer’s ink unit distance is unity, and there is an infinite supply of ink at x =
2, y = 0. With this topology, the symbols form a conditionally compact space.

 7. The expression “the functional calculus” is used throughout to mean the
restricted Hilbert functional calculus.

 8. It is most natural to construct first a choice machine (§2) to do this. But it
then easy to construct the required automatic machine. We can suppose that
the choices are always choices between two possibilities 0 and 1. Each proof
will then be determined by a sequence of choices i1, i2, …, in (i1 = 0 or 1, i2
= 0 or 1, …, in = 0 or 1), and hence the number 2n + i1 25+1 + i2 25-2+...+
in, completely determines the proof. The automatic machine carries out
successively proof 1, proof 2, proof 3, ….

 9. The author has found a description of such a machine.
10. The negation sign is written before an expression and not over it.
11. A sequence of r primes is denoted by [6].
12. If computes M, then the problem whether O prints 0 infinitely often is of the

same character as the problem whether M is circle-free.

13. A function In may be defined in many other ways so as to run through the
computable numbers.

14. Although it is not possible to find a general process for determining whether
a given number is satisfactory, it is often possible to show that certain classes
of numbers are satisfactory.

15. Loc. cit.
16. In a complete proof of the V-definability of computable sequences it would

be best to modify this method by replacing the numerical description of the
complete configurations by a description which can be handled more easily
with our apparatus. let us choose certain integers to represent the symbols and
the m-configurations of the machine. Suppose that in a certain complete
configuration the numbers representing the successive symbols on the tape
are s1s2 ... sn, that the m-th symbol is scanned, and that the m-configuration
has the number t; then we may represent this complete configuration by the
formula

[[Ns7,Ns8, …, Nsp-7], [Nt, Nsp], [Nsp=7, …, Nsv]]

where [a,b] stands for Vu[{{u}(a)}(b)],

[a,b,c] stands for Vu[{{{u}(a)}(b)}(c)],

etc.
17. Proc. London Math. Soc (2) 42 (1936 – 7), 230 – 265.
18. The author is indebted to P. Bernays for pointing out these errors.
19. The use of overlapping intervals for the definition of real numbers is due

originally to Brouwer.

